Last visit was: 20 Nov 2025, 00:51 It is currently 20 Nov 2025, 00:51
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
GMATMadeeasy
Joined: 25 Dec 2009
Last visit: 17 Nov 2011
Posts: 65
Own Kudos:
1,904
 [139]
Given Kudos: 3
Posts: 65
Kudos: 1,904
 [139]
8
Kudos
Add Kudos
131
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,422
 [83]
29
Kudos
Add Kudos
54
Bookmarks
Bookmark this Post
General Discussion
User avatar
GMATMadeeasy
Joined: 25 Dec 2009
Last visit: 17 Nov 2011
Posts: 65
Own Kudos:
1,904
 [2]
Given Kudos: 3
Posts: 65
Kudos: 1,904
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
User avatar
ashueureka
Joined: 20 Dec 2009
Last visit: 06 Jun 2012
Posts: 9
Own Kudos:
119
 [9]
Given Kudos: 5
Posts: 9
Kudos: 119
 [9]
7
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
I think this way:

For each child we've two options i.e., that child can either be a boy or a girl.Hence we have 2^6 = 64 total outcomes.
Now out of 6 children any 4 of them can boys and this can be done in 6C4 = 15 ways.
Now here I don't think that ordering does matter in this case.

So the probability comes out to be 15/64.

P.S. Please explain me if ordering really matters in this case as my understanding is quite naive in these problems.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
778,422
 [2]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,422
 [2]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
ashueureka
I think this way:

For each child we've two options i.e., that child can either be a boy or a girl.Hence we have 2^6 = 64 total outcomes.
Now out of 6 children any 4 of them can boys and this can be done in 6C4 = 15 ways.
Now here I don't think that ordering does matter in this case.

So the probability comes out to be 15/64.

P.S. Please explain me if ordering really matters in this case as my understanding is quite naive in these problems.

This way of solving is also correct. You've already considered all possible arrangements for BBBBGG with 6C4, which is 6!/4!2!. If you look at my solution and at yours you'll see that both wrote the same formulas but with different approach.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,422
Kudos
Add Kudos
Bookmarks
Bookmark this Post
chetan2u
hi bunuel , this is binomial distr(seen a few q on gmat).... do we have q in gmat on which we require hypergeometric distr

Simple ones. For example: there are 3 men and 5 women, what's the probability of choosing 5 people out of which 2 are men?

This can be considered as hypergeometric distribution, but it's quite simple: 3C2*5C3/8C5.
User avatar
mojorising800
Joined: 11 Dec 2009
Last visit: 05 Mar 2012
Posts: 111
Own Kudos:
1,682
 [1]
Given Kudos: 7
Status:Its Wow or Never
Location: India
Concentration: Technology, Strategy
GMAT 1: 670 Q47 V35
GMAT 2: 710 Q48 V40
WE:Information Technology (Computer Software)
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
hi bunuel
could u plz provide a few application qs. to this formula?
TIA


Bunuel
NOTE: If the probability of a certain event is \(p\) (\(\frac{1}{2}\) in our case), then the probability of it occurring \(k\) times (4 times in our case) in \(n\)-time (6 in our case) sequence is:

\(P = C^k_n*p^k*(1-p)^{n-k}\)

\(P = C^k_n*p^k*(1-p)^{n-k}= C^4_6*(\frac{1}{2})^4*(1-\frac{1}{2})^{6-4}= C^4_6*(\frac{1}{2})^4*(\frac{1}{2})^{2}=\frac{6!}{4!2!}*\frac{1}{2^6}=\frac{15}{64}\)


Consider this:

We are looking for the case BBBBGG, probability of each B or G is \(\frac{1}{2}\), hence \(\frac{1}{2^6}\). But BBBBGG can occur (these letters can be arranged) in \(\frac{6!}{4!2!}\) # of ways. So, the total probability would be \(\frac{6!}{4!2!}*\frac{1}{2^6}=\frac{15}{64}\).

Answer: C.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,422
Kudos
Add Kudos
Bookmarks
Bookmark this Post
mojorising800
hi bunuel
could u plz provide a few application qs. to this formula?
TIA


Bunuel
NOTE: If the probability of a certain event is \(p\) (\(\frac{1}{2}\) in our case), then the probability of it occurring \(k\) times (4 times in our case) in \(n\)-time (6 in our case) sequence is:

\(P = C^k_n*p^k*(1-p)^{n-k}\)

\(P = C^k_n*p^k*(1-p)^{n-k}= C^4_6*(\frac{1}{2})^4*(1-\frac{1}{2})^{6-4}= C^4_6*(\frac{1}{2})^4*(\frac{1}{2})^{2}=\frac{6!}{4!2!}*\frac{1}{2^6}=\frac{15}{64}\)


Consider this:

We are looking for the case BBBBGG, probability of each B or G is \(\frac{1}{2}\), hence \(\frac{1}{2^6}\). But BBBBGG can occur (these letters can be arranged) in \(\frac{6!}{4!2!}\) # of ways. So, the total probability would be \(\frac{6!}{4!2!}*\frac{1}{2^6}=\frac{15}{64}\).

Answer: C.

Check the Probability and Combinatorics chapters in Math Book (link in my signature): theory, examples and links to the problems.
User avatar
mrblack
Joined: 27 Apr 2008
Last visit: 06 May 2013
Posts: 135
Own Kudos:
Given Kudos: 1
Posts: 135
Kudos: 230
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
NOTE: If the probability of a certain event is \(p\) (\(\frac{1}{2}\) in our case), then the probability of it occurring \(k\) times (4 times in our case) in \(n\)-time (6 in our case) sequence is:

\(P = C^k_n*p^k*(1-p)^{n-k}\)

\(P = C^k_n*p^k*(1-p)^{n-k}= C^4_6*(\frac{1}{2})^4*(1-\frac{1}{2})^{6-4}= C^4_6*(\frac{1}{2})^4*(\frac{1}{2})^{2}=\frac{6!}{4!2!}*\frac{1}{2^6}=\frac{15}{64}\)


By the way, the formula should be this instead:

\(P = C^n_k*p^k*(1-p)^{n-k}\)
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,422
Kudos
Add Kudos
Bookmarks
Bookmark this Post
mrblack
Bunuel
NOTE: If the probability of a certain event is \(p\) (\(\frac{1}{2}\) in our case), then the probability of it occurring \(k\) times (4 times in our case) in \(n\)-time (6 in our case) sequence is:

\(P = C^k_n*p^k*(1-p)^{n-k}\)

\(P = C^k_n*p^k*(1-p)^{n-k}= C^4_6*(\frac{1}{2})^4*(1-\frac{1}{2})^{6-4}= C^4_6*(\frac{1}{2})^4*(\frac{1}{2})^{2}=\frac{6!}{4!2!}*\frac{1}{2^6}=\frac{15}{64}\)


By the way, the formula should be this instead:

\(P = C^n_k*p^k*(1-p)^{n-k}\)

It's the same. Since n>=k, you can write as \(nCk\), \(C(n,k)\), \(C(k,n)\), \(C^n_k\), \(C^k_n\), it's clear what is meant. Actually in different books you can find different forms of writing this. Walker in his topic used \(C^n_k\), but \(C^k_n\) is also correct.
User avatar
ram186
Joined: 13 Jan 2015
Last visit: 08 Dec 2021
Posts: 10
Own Kudos:
5
 [1]
Given Kudos: 187
Posts: 10
Kudos: 5
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel can you please explain the logic behind 'p' being 1/2
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,422
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ram186
Bunuel
The probability that a family with 6 children has exactly four boys is:

A. 1/3
B. 1/64
C. 15/64
D. 3/8
E. none of the above

NOTE: If the probability of a certain event is \(p\) (\(\frac{1}{2}\) in our case), then the probability of it occurring \(k\) times (4 times in our case) in \(n\)-time (6 in our case) sequence is:

\(P = C^k_n*p^k*(1-p)^{n-k}\)

\(P = C^k_n*p^k*(1-p)^{n-k}= C^4_6*(\frac{1}{2})^4*(1-\frac{1}{2})^{6-4}= C^4_6*(\frac{1}{2})^4*(\frac{1}{2})^{2}=\frac{6!}{4!2!}*\frac{1}{2^6}=\frac{15}{64}\)


Consider this:

We are looking for the case BBBBGG, probability of each B or G is \(\frac{1}{2}\), hence \(\frac{1}{2^6}\). But BBBBGG can occur (these letters can be arranged) in \(\frac{6!}{4!2!}\) # of ways. So, the total probability would be \(\frac{6!}{4!2!}*\frac{1}{2^6}=\frac{15}{64}\).

Answer: C.[/Bunuel can you please explain the logic behind 'p' being 1/2]

The probability of having a girl = the probability of having a boy = 1/2.
avatar
soleimanian
Joined: 11 Jun 2015
Last visit: 17 Dec 2019
Posts: 15
Own Kudos:
Given Kudos: 186
Location: Iran (Islamic Republic of)
Concentration: Accounting, Finance
WE:Education (Education)
Posts: 15
Kudos: 13
Kudos
Add Kudos
Bookmarks
Bookmark this Post
How we can infer that the chance of having a boy is 0.5?
What if it were 0.2 ?
Don't you think the question stem must at least asserts that it is a normal family with equal change of getting a boy or a girl?
Correct me, if my thoughts is wrong.
Thanks.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,422
Kudos
Add Kudos
Bookmarks
Bookmark this Post
soleimanian
How we can infer that the chance of having a boy is 0.5?
What if it were 0.2 ?
Don't you think the question stem must at least asserts that it is a normal family with equal change of getting a boy or a girl?
Correct me, if my thoughts is wrong.
Thanks.

Proper GMAT question would specify this. So, don't worry on the actual exam everything will be unambiguous.
User avatar
MathRevolution
User avatar
Math Revolution GMAT Instructor
Joined: 16 Aug 2015
Last visit: 27 Sep 2022
Posts: 10,070
Own Kudos:
Given Kudos: 4
GMAT 1: 760 Q51 V42
GPA: 3.82
Expert
Expert reply
GMAT 1: 760 Q51 V42
Posts: 10,070
Kudos: 19,393
Kudos
Add Kudos
Bookmarks
Bookmark this Post
P(Boy) = \(\frac{1}{2}\)

Total: 6 and we need '4' boys

=> \(^6{C_4} * (\frac{1}{2})^4 * (\frac{1}{2})^2\)

=> 15 * (\(\frac{1}{64}\))

=> \(\frac{15}{64}\)

Answer C
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 19 Nov 2025
Posts: 21,717
Own Kudos:
26,998
 [1]
Given Kudos: 300
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,717
Kudos: 26,998
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
GMATMadeeasy
The probability that a family with 6 children has exactly four boys is:

A. 1/3
B. 1/64
C. 15/64
D. 3/8
E. none of the above
Solution:

Letting B represent a boy child and G represent a girl, the probability of 4 boys and 2 girls, in the specific order of BBBBGG, is:

½ x ½ x ½ x ½ x ½ x ½ = 1/64

However, since 4 boys and 2 girls can be arranged in 6!/(4! x 2!) = (6 x 5)/2 = 15 ways, the probability of having 4 boys and 2 girls (in any order) is 15 x 1/64 = 15/64.

Answer: C
User avatar
CEdward
Joined: 11 Aug 2020
Last visit: 14 Apr 2022
Posts: 1,203
Own Kudos:
Given Kudos: 332
Posts: 1,203
Kudos: 272
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
The probability that a family with 6 children has exactly four boys is:

A. 1/3
B. 1/64
C. 15/64
D. 3/8
E. none of the above

NOTE: If the probability of a certain event is \(p\) (\(\frac{1}{2}\) in our case), then the probability of it occurring \(k\) times (4 times in our case) in \(n\)-time (6 in our case) sequence is:

\(P = C^k_n*p^k*(1-p)^{n-k}\)

\(P = C^k_n*p^k*(1-p)^{n-k}= C^4_6*(\frac{1}{2})^4*(1-\frac{1}{2})^{6-4}= C^4_6*(\frac{1}{2})^4*(\frac{1}{2})^{2}=\frac{6!}{4!2!}*\frac{1}{2^6}=\frac{15}{64}\)


Consider this:

We are looking for the case BBBBGG, probability of each B or G is \(\frac{1}{2}\), hence \(\frac{1}{2^6}\). But BBBBGG can occur (these letters can be arranged) in \(\frac{6!}{4!2!}\) # of ways. So, the total probability would be \(\frac{6!}{4!2!}*\frac{1}{2^6}=\frac{15}{64}\).

Answer: C.

Bunuel I get the math, but why should we care about the order? That's the part that doesn't make sense to me. Isn't it sufficient to just have 4 boys and 2 girls, irrespective of the order?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 20 Nov 2025
Posts: 105,408
Own Kudos:
778,422
 [1]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,422
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
CEdward
Bunuel
The probability that a family with 6 children has exactly four boys is:

A. 1/3
B. 1/64
C. 15/64
D. 3/8
E. none of the above

NOTE: If the probability of a certain event is \(p\) (\(\frac{1}{2}\) in our case), then the probability of it occurring \(k\) times (4 times in our case) in \(n\)-time (6 in our case) sequence is:

\(P = C^k_n*p^k*(1-p)^{n-k}\)

\(P = C^k_n*p^k*(1-p)^{n-k}= C^4_6*(\frac{1}{2})^4*(1-\frac{1}{2})^{6-4}= C^4_6*(\frac{1}{2})^4*(\frac{1}{2})^{2}=\frac{6!}{4!2!}*\frac{1}{2^6}=\frac{15}{64}\)


Consider this:

We are looking for the case BBBBGG, probability of each B or G is \(\frac{1}{2}\), hence \(\frac{1}{2^6}\). But BBBBGG can occur (these letters can be arranged) in \(\frac{6!}{4!2!}\) # of ways. So, the total probability would be \(\frac{6!}{4!2!}*\frac{1}{2^6}=\frac{15}{64}\).

Answer: C.

Bunuel I get the math, but why should we care about the order? That's the part that doesn't make sense to me. Isn't it sufficient to just have 4 boys and 2 girls, irrespective of the order?

A family can have 4 boys and 2 girls in 15 different ways (BBBBGG, GGBBBB, GBBBBG, GBBGBB, ...). Each of them has the probability of 1/2^6, so the overall probability is the sum of these 15 different cases, giving the final answer of 15*1/2^6.
User avatar
naveeng15
Joined: 08 Dec 2021
Last visit: 23 Jun 2025
Posts: 71
Own Kudos:
Given Kudos: 38
Location: India
Concentration: Operations, Leadership
GMAT 1: 610 Q47 V28
WE:Design (Manufacturing)
GMAT 1: 610 Q47 V28
Posts: 71
Kudos: 9
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Its a binomial situation ,

since the P(having Boy or girl ) is independent and its 1/2 we can use the formula

P(E) = nCr P(success)^r P(failure)^(n-r)

= 6C4 (1/2)^4 (1/2)^2
= 15/64
User avatar
Mugdho
Joined: 27 Feb 2019
Last visit: 11 Nov 2023
Posts: 93
Own Kudos:
Given Kudos: 495
Posts: 93
Kudos: 239
Kudos
Add Kudos
Bookmarks
Bookmark this Post
KarishmaB
Bunuel
chetan2u

GMATinsight

why does it have to be a case of ordering? question didn’t say anything about order...it simply asked if there are 4 boys and 2 girls...

if we consider the cases, as-

6 Girls
5 girls and 1 boy
4 girls and 2 boys
3 girls and 3 boys
2 girls and 4 boys
1 girl and 5 boys

So there are 7 cases...and 4 boys can happen only in one way...

so probability : 1/7

what's wrong with this reasoning?

Posted from my mobile device
 1   2   
Moderators:
Math Expert
105408 posts
Tuck School Moderator
805 posts