GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 21 Oct 2019, 05:43

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

0.99999999/1.0001 - 0.99999991/1.0003 =

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Manager
Manager
avatar
Joined: 02 Dec 2012
Posts: 173
0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 26 Dec 2012, 07:36
36
439
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

53% (02:29) correct 47% (02:19) wrong based on 3255 sessions

HideShow timer Statistics

\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\)


(A) \(10^{(-8)}\)

(B) \(3*10^{(-8)}\)

(C) \(3*10^{(-4)}\)

(D) \(2*10^{(-4)}\)

(E) \(10^{(-4)}\)



OG 2019 #215 PS00574
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58421
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 26 Dec 2012, 07:39
137
2
200
Walkabout wrote:
\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\)

(A) 10^(-8)
(B) 3*10^(-8)
(C) 3*10^(-4)
(D) 2*10^(-4)
(E) 10^(-4)


\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\frac{1-10^{-8}}{1+10^{-4}}-\frac{1-9*10^{-8}}{1+3*10^{-4}}\)

Now apply \(a^2-b^2=(a+b)(a-b)\):

\(\frac{1-10^{-8}}{1+10^{-4}}-\frac{1-9*10^{-8}}{1+3*10^{-4}}=\frac{(1+10^{-4})(1-10^{-4})}{1+10^{-4}}-\frac{(1+3*10^{-4})(1-3*10^{-4})}{1+3*10^{-4}}=(1-10^{-4})-(1-3*10^{-4})=2*10^{-4}\).

Answer: D.
_________________
Veritas Prep GMAT Instructor
User avatar
V
Joined: 16 Oct 2010
Posts: 9704
Location: Pune, India
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 22 Jul 2013, 22:16
157
53
Walkabout wrote:
\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\)

(A) 10^(-8)
(B) 3*10^(-8)
(C) 3*10^(-4)
(D) 2*10^(-4)
(E) 10^(-4)


Responding to a pm:
To be honest, I can't think of an alternative method. The fractions are really complicated and need to be simplified before proceeding. For simplification, I think you will need to use a^2 - b^2 = (a - b)(a + b)

All I can suggest is that you can try to solve it without the exponents if that seems easier e.g.

\(\frac{0.99999999}{1.0001}-\frac{.99999991}{1.0003}\)

\(\frac{{1 - .00000001}}{{1 + .0001}}-\frac{{1 - .00000009}}{{1 + .0003}}\)

\(\frac{{1^2 - .0001^2}}{{1 + .0001}}-\frac{{1^2 - 0.0003^2}}{{1 + .0003}}\)

\(\frac{{(1 - .0001)(1 + .0001)}}{{(1 + .0001)}}-\frac{{(1 - .0003)(1 + .0003)}}{{(1 + .0003)}}\)

\((1 - .0001) - (1 - .0003)\)

\(.0002 = 2*10^{-4}\)
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Most Helpful Community Reply
Senior Manager
Senior Manager
User avatar
Joined: 15 Oct 2015
Posts: 299
Concentration: Finance, Strategy
GPA: 3.93
WE: Account Management (Education)
GMAT ToolKit User
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 04 Mar 2016, 12:15
94
12
Walkabout wrote:
\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\)

(A) 10^(-8)
(B) 3*10^(-8)
(C) 3*10^(-4)
(D) 2*10^(-4)
(E) 10^(-4)


2 minutes ain't gonna do this math. 3mins may with a high margin of error under exam condition.

Look at the options closely

A. 0.00000001
B. 0.00000003
C. 0.0003
D. 0.0002
E. 0.0001

Only one option is an even number, the rest odd (an esoteric sort of even/odd number)

both fractions in the question are odds
odd minus odd is always even.
So answer must be even.
Only D is even.

__________________________
Hit kudos for GMATclub's sake.
General Discussion
Director
Director
User avatar
Joined: 22 Mar 2011
Posts: 588
WE: Science (Education)
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 02 Jul 2013, 01:16
4
5
\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\)

A. 10^-8
B. 3(10^-8)
C. 3(10^-4)
D. 2(10^-4)
E. 10^-4[/quote]

Well, you need a little bit of algebra here...

The question is meant to test the formula \(a^2-b^2=(a+b)(a-b).\)
The clue is in the answers, explicitly the powers of \(10\).
You can write the given expression as follows:

\(\frac{1-10^{-8}}{1+10^{-4}}-\frac{1-9*10^{-8}}{1+3*10^{-4}}=\frac{(1+10^{-4})(1-10^{-4})}{1+10^{-4}}-\frac{(1+3*10^{-4})(1-3*10^{-4})}{1+3*10^{-4}}=1-10^{-4}-(1-3*10^{-4})=2*10^{-4}.\)

Answer D
_________________
PhD in Applied Mathematics
Love GMAT Quant questions and running.
Verbal Forum Moderator
User avatar
B
Joined: 10 Oct 2012
Posts: 590
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 22 Jul 2013, 23:00
33
1
4
Walkabout wrote:
\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\)

(A) 10^(-8)
(B) 3*10^(-8)
(C) 3*10^(-4)
(D) 2*10^(-4)
(E) 10^(-4)


The best solution is already outlined by Bunuel/Karishma. Because this is an Official Problem, I was sure there might be another way to do this.
So i did spend some time and realized that 0.99999999 might be a multiple of 1.0001 because of the non-messy options and found this :

9*1.0001 = 9.0009 ; 99*1.0001 = 99.0099 and as because the problem had 9 eight times, we have 9999*1.0001 = 9999.9999.
Again, looking for a similar pattern, the last digit of 0.99999991 gave a hint that maybe we have to multiply by something ending in 7, as because we have 1.0003 in the denominator. And indeed 9997*1.0003 = 9999.9991. Thus, the problem boiled down to \(9999*10^{-4} - 9997*10^{-4} = 2*10^{-4}\)

D.

Maybe a bit of luck was handy.
_________________
Intern
Intern
avatar
Joined: 28 May 2012
Posts: 25
Concentration: Finance, General Management
GMAT 1: 700 Q50 V35
GPA: 3.28
WE: Analyst (Investment Banking)
GMAT ToolKit User
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 23 Jul 2013, 00:25
31
7
Here is my alternative solution for this problem (not for all problems):

\(\frac{A}{B} - \frac{C}{D}= \frac{(AD-BC)}{BD}\).

So \(\frac{0.99999999}{1.0001} - \frac{0.99999991}{1.0003}= \frac{(0.99999999*1.0003-0.99999991*1.0001)}{(1.0001*1.0003)}\).

For this case, the ultimate digit of 0.99999999*1.0003-0.99999991*1.0001 is 6
In the denominator, the ultimate digit of 1.0001*1.0003 is 3
Therefore, the ultimate digit of the final result is 2. So it should be 2 * 0.00...01 --> Only D has the last digit of 2.

Alternatively, we can calculate each fraction, \(\frac{0.99999999}{1.0001}\) has last digit of 9, and \(\frac{0.99999991}{1.0003}\) has last digit of 7, so the final last digit is 2 --> D

This is a special problem. For example \(\frac{...6}{4}\) can have a result of ...4 or ...9. Therefore, in this case we have to calculate as Bunuel did.

In general, we can only apply this strategy only if the last digit of divisor is 1, 2 or 3.
Intern
Intern
avatar
Joined: 09 Sep 2013
Posts: 16
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 09 Oct 2013, 17:50
How did we even know to apply a^2 - b^2 = (a - b)(a + b) to this problem? I understand the math, but if I saw this problem on the test I would have never guessed to apply that method.

Thanks,
C
Veritas Prep GMAT Instructor
User avatar
V
Joined: 16 Oct 2010
Posts: 9704
Location: Pune, India
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 09 Oct 2013, 21:36
1
runningguy wrote:
How did we even know to apply a^2 - b^2 = (a - b)(a + b) to this problem? I understand the math, but if I saw this problem on the test I would have never guessed to apply that method.

Thanks,
C


(a^2 - b^2) is the "mathematical" method i.e. a very clean solution that a Math Prof will give you. With enough experience a^2 - b^2 method will come to you. But since most of us are not Math professors, we could get through using brute force. Two alternative approaches have been given by mau5 and lequanftu26. You may want to give them a thorough read.
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Manager
Manager
avatar
Joined: 24 Mar 2013
Posts: 52
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 01 Mar 2014, 23:48
10
I just rounded it up, did some questionable math and got lucky, it would seem.

1/1.0001 - 1/1.0003 = ?
1/1.0001 = 1/1.0003
1.0003(1) = 1.0001(1)
1.0003-1.0001=?
0.0002

Answer = D. 2(10^-4)
Current Student
User avatar
V
Joined: 19 Mar 2012
Posts: 4263
Location: India
GMAT 1: 760 Q50 V42
GPA: 3.8
WE: Marketing (Non-Profit and Government)
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 14 May 2015, 07:01
5
5
GMAT Club Legend
GMAT Club Legend
User avatar
V
Joined: 12 Sep 2015
Posts: 4015
Location: Canada
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 10 Apr 2016, 10:51
6
4
Walkabout wrote:
\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\)

(A) 10^(-8)
(B) 3*10^(-8)
(C) 3*10^(-4)
(D) 2*10^(-4)
(E) 10^(-4)


Another approach is to combine the fractions and then use some approximation.

First combine the fractions by finding a common denominator.
(9999.9999)/(10001) - (9999.9991)/(10003)
= (9999.9999)(10003)/(10001)(10003) - (9999.9991)(10001) /(10003)(10001)
= [(10003)(9999.9999) - (10001)(9999.9991)] / (10001)(10003)
= [(10003)(10^4) - (10001)(10^4)] / (10^4)(10^4) ... (approximately)
= [(10003) - (10001)] / (10^4) ... (divided top and bottom by 10^4)
= 2/(10^4)
= 2*10^(-4)
= D

Cheers,
Brent
_________________
Test confidently with gmatprepnow.com
Image
Math Expert
avatar
V
Joined: 02 Aug 2009
Posts: 8005
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 11 Apr 2016, 07:19
6
Walkabout wrote:
\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\)

(A) 10^(-8)
(B) 3*10^(-8)
(C) 3*10^(-4)
(D) 2*10^(-4)
(E) 10^(-4)



Hi,

we should be able to take advantage of choices whereever possible...
Ofcourse, I donot think choices here were given to be able to eliminate all except ONE...
But then that is what is possible in this Q with the choices given...


\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\)..
both the terms individually are \(\frac{ODD}{ODD}\)so each term should come out as ODD and \(ODD - ODD =EVEN\)...
\(\frac{0.99999999*1.0003-1.0001*0.99999991}{1.0003*1.0001}=\) should be \(\frac{EVEN}{ODD}\)..
so our answer should be something with the last digit in DECIMALs as some EVEN number..
Only D has a 2 in its ten-thousandths place..
D

But ofcourse if we had another choice of same type, we would have had to use a^2-b^2 as done by bunuel But if choice permits, GMAT is all about using the opportunities...
_________________
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2815
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post Updated on: 03 May 2016, 09:19
5
Walkabout wrote:
\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\)

(A) 10^(-8)
(B) 3*10^(-8)
(C) 3*10^(-4)
(D) 2*10^(-4)
(E) 10^(-4)


When first looking at this problem, we must consider the fact that 0.99999999/1.0001 and 0.99999991/1.0003 are both pretty nasty-looking fractions. However, this is a situation in which we can use the idea of the difference of two squares to our advantage. To make this idea a little clearer, let’s first illustrate the concept with a few easier whole numbers. For instance, let’s say we were asked:

999,999/1,001 – 9,991/103 = ?

We could rewrite this as:

(1,000,000 – 1)/1,001 – (10,000 – 9)/103

(1000 + 1)(1000 – 1)/1,001 – (100 – 3)(100 + 3)/103

(1,001)(999)/1,001 – (97)(103)/103

999 – 97 = 902

Notice how cleanly the denominators canceled out in this case. Even though the given problem has decimals, we can follow the same approach.

0.99999999/1.0001 – 0.99999991/1.0003

[(1 – 0.00000001)/1.0001] – [(1 – 0.00000009)/1.0003]

[(1 – 0.0001)(1 + 0.0001)/1.0001] – [(1 – 0.0003)(1 + 0.0003)]

When converting this using the difference of squares, we must be very careful not to make any mistakes with the number of decimal places in our values. Since 0.00000001
has 8 decimal places, the decimals in the factors of the numerator of the first set of brackets must each have 4 decimal places. Similarly, since 0.00000009 has 8 decimal places, the decimals in the factors of the numerator of the second set of brackets must each have 4 decimal places. Let’s continue to simplify.

[(1 – 0.0001)(1 + 0.0001)/1.0001] – [(1 – 0.0003)(1 + 0.0003)]

[(0.9999)(1.0001)/1.0001] – [(0.9997)(1.0003)/1.0003]

0.9999 – 0.9997

0.0002

Converting this to scientific notation to match the answer choices, we have:

2 x 10^-4

Answer is D
_________________

Jeffrey Miller

Head of GMAT Instruction

Jeff@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.


Originally posted by JeffTargetTestPrep on 03 May 2016, 09:00.
Last edited by JeffTargetTestPrep on 03 May 2016, 09:19, edited 2 times in total.
Intern
Intern
avatar
Joined: 09 Jun 2017
Posts: 2
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 10 Jun 2017, 21:27
4
1
Here's how I solved it, which I think is less painful (but maybe wouldn't generalize as well)

\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}\)

Get rid of that distracting decimal:

\(\frac{9999999}{100010000}-\frac{99999991}{100030000}\)

Recognize that both fractions are some very small number from 1, so try to expose that small number by pulling out the 1:

\(\frac{100010000-10001}{100010000}-\frac{100030000-30009}{100030000}\)

Simplify, and marvel at the convenient numbers revealed

\(1-\frac{1}{10000}-1+\frac{3}{10000}\)

Do the arithmetic, done.
Intern
Intern
User avatar
S
Status: Current Student
Joined: 27 Mar 2014
Posts: 26
Location: Bangladesh
Concentration: Entrepreneurship, Finance
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 19 Nov 2017, 04:49
3
Walkabout wrote:
\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\)


(A) \(10^{(-8)}\)

(B) \(3*10^{(-8)}\)

(C) \(3*10^{(-4)}\)

(D) \(2*10^{(-4)}\)

(E) \(10^{(-4)}\)


Simplest way to handle this kind of problem is:

.99 can be written as \(\frac{99}{10^2}\) OR \(\frac{(10^2-1)}{10^2}\) and .91 can be written as \(\frac{91}{10^2}\) OR \(\frac{(10^2-9)}{10^2}\)

For two 9's, we wrote \(\frac{(10^2-1)}{10^2}\), for eight 9's, we will take \(\frac{(10^8-1)}{10^8}\)
Same rule applies to 1.0001 and 1.0003

So, the simplified version becomes

=> \(\frac{(10^8-1)*10^4}{(10^4+1)*10^8}\) - \(\frac{(10^8-9)*10^4}{(10^4+1)*10^8}\)

=> \(\frac{{(10^4)^2-1^2}}{10^4*(10^4+1)}\) - \(\frac{{(10^4)^2-3^2}}{10^4*(10^4+3)}\)

=> \(\frac{(10^4+1)*(10^4-1)}{10^4*(10^4+1)}\) - \(\frac{(10^4+3)*(10^4-3)}{10^4*(10^4+3)}\)

=> \(\frac{(10^4-1)}{10^4}\) - \(\frac{(10^4-3)}{10^4}\)

=> \(\frac{1}{10^4}*(10^4-1-10^4+3)\)

=> \(2*10^{-4}\)
Veritas Prep GMAT Instructor
User avatar
V
Joined: 16 Oct 2010
Posts: 9704
Location: Pune, India
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 15 Dec 2017, 00:45
1
VeritasPrepKarishma wrote:
Walkabout wrote:
\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\)

(A) 10^(-8)
(B) 3*10^(-8)
(C) 3*10^(-4)
(D) 2*10^(-4)
(E) 10^(-4)


Responding to a pm:
To be honest, I can't think of an alternative method. The fractions are really complicated and need to be simplified before proceeding. For simplification, I think you will need to use a^2 - b^2 = (a - b)(a + b)

All I can suggest is that you can try to solve it without the exponents if that seems easier e.g.

\(\frac{0.99999999}{1.0001}-\frac{.99999991}{1.0003}\)

\(\frac{{1 - .00000001}}{{1 + .0001}}-\frac{{1 - .00000009}}{{1 + .0003}}\)

\(\frac{{1^2 - .0001^2}}{{1 + .0001}}-\frac{{1^2 - 0.0003^2}}{{1 + .0003}}\)

\(\frac{{(1 - .0001)(1 + .0001)}}{{(1 + .0001)}}-\frac{{(1 - .0003)(1 + .0003)}}{{(1 + .0003)}}\)

\((1 - .0001) - (1 - .0003)\)

\(.0002 = 2*10^{-4}\)


Here is the video solution to this difficult looking problem: https://www.veritasprep.com/gmat-soluti ... olving_211
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
VP
VP
User avatar
D
Joined: 09 Mar 2016
Posts: 1230
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 06 Jan 2018, 05:27
Bunuel wrote:
Walkabout wrote:
\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\)

(A) 10^(-8)
(B) 3*10^(-8)
(C) 3*10^(-4)
(D) 2*10^(-4)
(E) 10^(-4)


\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\frac{1-10^{-8}}{1+10^{-4}}-\frac{1-9*10^{-8}}{1+3*10^{-4}}\)

Now apply \(a^2-b^2=(a+b)(a-b)\):

\(\frac{1-10^{-8}}{1+10^{-4}}-\frac{1-9*10^{-8}}{1+3*10^{-4}}=\frac{(1+10^{-4})(1-10^{-4})}{1+10^{-4}}-\frac{(1+3*10^{-4})(1-3*10^{-4})}{1+3*10^{-4}}=(1-10^{-4})-(1-3*10^{-4})=2*10^{-4}\).

Answer: D.


Hello Bunuel :-) - do you have some useful links for better understanding of your solution ... i dont understand based on which rule transform 1.0003 into 1+3*10^-4 , and 1-9*10^-8 ?

Also what made you apply this formula :? \(a^2-b^2=(a+b)(a-b)\) and could you you break down this solution into more detaled steps ?
\(\frac{1-10^{-8}}{1+10^{-4}}-\frac{1-9*10^{-8}}{1+3*10^{-4}}=\frac{(1+10^{-4})(1-10^{-4})}{1+10^{-4}}-\frac{(1+3*10^{-4})(1-3*10^{-4})}{1+3*10^{-4}}=(1-10^{-4})-(1-3*10^{-4})=2*10^{-4}\). and what common denominator you chose after applying \(a^2-b^2=(a+b)(a-b)\)

Thank you :-)
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58421
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 06 Jan 2018, 06:53
dave13 wrote:
Bunuel wrote:
Walkabout wrote:
\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\)

(A) 10^(-8)
(B) 3*10^(-8)
(C) 3*10^(-4)
(D) 2*10^(-4)
(E) 10^(-4)


\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\frac{1-10^{-8}}{1+10^{-4}}-\frac{1-9*10^{-8}}{1+3*10^{-4}}\)

Now apply \(a^2-b^2=(a+b)(a-b)\):

\(\frac{1-10^{-8}}{1+10^{-4}}-\frac{1-9*10^{-8}}{1+3*10^{-4}}=\frac{(1+10^{-4})(1-10^{-4})}{1+10^{-4}}-\frac{(1+3*10^{-4})(1-3*10^{-4})}{1+3*10^{-4}}=(1-10^{-4})-(1-3*10^{-4})=2*10^{-4}\).

Answer: D.


Hello Bunuel :-) - do you have some useful links for better understanding of your solution ... i dont understand based on which rule transform 1.0003 into 1+3*10^-4 , and 1-9*10^-8 ?

Also what made you apply this formula :? \(a^2-b^2=(a+b)(a-b)\) and could you you break down this solution into more detaled steps ?
\(\frac{1-10^{-8}}{1+10^{-4}}-\frac{1-9*10^{-8}}{1+3*10^{-4}}=\frac{(1+10^{-4})(1-10^{-4})}{1+10^{-4}}-\frac{(1+3*10^{-4})(1-3*10^{-4})}{1+3*10^{-4}}=(1-10^{-4})-(1-3*10^{-4})=2*10^{-4}\). and what common denominator you chose after applying \(a^2-b^2=(a+b)(a-b)\)

Thank you :-)


1.
\(1+10^{-4}=1+\frac{1}{1,0000}=1+0.0001=1.0001\)
\(1+3*10^{-4}=1+\frac{3}{1,0000}=1+0.0003=1.0003\)

2. You should apply \(a^2-b^2=(a+b)(a-b)\) because after this you can reduce the denominator.

3.

8. Exponents and Roots of Numbers



Check below for more:
ALL YOU NEED FOR QUANT ! ! !
Ultimate GMAT Quantitative Megathread

Hope it helps.
_________________
Intern
Intern
avatar
B
Joined: 15 Jan 2016
Posts: 36
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =  [#permalink]

Show Tags

New post 25 Feb 2018, 17:25
1
GMAT Club Bot
Re: 0.99999999/1.0001 - 0.99999991/1.0003 =   [#permalink] 25 Feb 2018, 17:25

Go to page    1   2    Next  [ 26 posts ] 

Display posts from previous: Sort by

0.99999999/1.0001 - 0.99999991/1.0003 =

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne