Walkabout
\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\)
(A) 10^(-8)
(B) 3*10^(-8)
(C) 3*10^(-4)
(D) 2*10^(-4)
(E) 10^(-4)
Approach #1: AlgebraFirst recognize that \(0.99999999 = 1 - 0.00000001\) and \(0.99999991 = 1 - 0.00000009\)
Also recognize that \(0.00000001 = (0.0001)^2\) and \(0.00000009 = (0.0003)^2\)
So we get: \(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\frac{1 - 0.00000001}{1.0001}-\frac{1 - 0.00000009}{1.0003}\)
\(=\frac{1^2 - (0.0001)^2}{1.0001}-\frac{1^2 - (0.0003)^2}{1.0003}\)
\(=\frac{(1 + 0.0001)(1 - 0.0001)}{1.0001}-\frac{(1 + 0.0003)(1 - 0.0003)}{1.0003}\)
[factored as difference of squares]\(=\frac{(1.0001)(0.9999)}{1.0001}-\frac{(1.0003)(0.9997)}{1.0003}\)
[simplified] \(=0.9999-0.9997\)
[some terms cancelled out]\(=0.0002\)
\(=2 \times 10^{-4}\)
Answer: D
Approach #2: Combine the fractions and then use some approximation.To avoid so many decimals, let's first multiply the numerators and denominators in both fractions by 10,000 to get the following equivalent fractions: \(\frac{9999.9999}{10001}-\frac{9999.9991}{10003}\)
Rewrite with common denominators: \(\frac{(10003)(9999.9999)}{(10001)(10003)}-\frac{(10001)(9999.9991)}{(10001)(10003)}\)
Combine to get: \(\frac{(10003)(9999.9999) - (10001)(9999.9991)}{(10001)(10003)}\)
Since 9999.9999 and 9999.9991 are very close to 10,000, we get the following approximation: \(\frac{(10003)(10,000) - (10001)(10,000)}{(10001)(10003)}\)
Likewise, we can approximate denominator as follows: \(\frac{(10003)(10,000) - (10001)(10,000)}{(10,000)(10,000)}\)
Factor the numerator: \(\frac{(10,000)(10,003 - 10,001)}{(10,000)(10,000)}\)
Simplify: \(\frac{10,003 - 10,001}{10,000}\)
Simplify: \(\frac{2}{10,000}\)
Rewrite as: \((2)(\frac{1}{10,000})\)
Which is the same as: \((2)(10^{-4})\)
Answer: D
Cheers,
Brent