Last visit was: 24 Apr 2024, 03:37 It is currently 24 Apr 2024, 03:37

Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
SORT BY:
Date
Tags:
Show Tags
Hide Tags
User avatar
Director
Director
Joined: 22 Nov 2007
Posts: 631
Own Kudos [?]: 2760 [180]
Given Kudos: 0
Send PM
Most Helpful Reply
Math Expert
Joined: 02 Sep 2009
Posts: 92901
Own Kudos [?]: 618697 [60]
Given Kudos: 81586
Send PM
User avatar
Intern
Intern
Joined: 27 Dec 2007
Posts: 26
Own Kudos [?]: 49 [39]
Given Kudos: 1
Send PM
General Discussion
SVP
SVP
Joined: 17 Nov 2007
Posts: 2408
Own Kudos [?]: 10035 [6]
Given Kudos: 361
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
4
Kudos
2
Bookmarks
Expert Reply
C

let 1,2,3,4,5 are people.

1. we fix position of 1
2. we have 4*3=12 possible positions for left and right neighbors of 1.
3. for each position of x1y we have 2 possible positions for last two people: ax1yb and bx1ya.

Therefore, N=12*2=24
User avatar
Director
Director
Joined: 22 Nov 2007
Posts: 631
Own Kudos [?]: 2760 [1]
Given Kudos: 0
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
1
Bookmarks
OA is C, good...anyway, provided I am quite bad at combs, would you please explain it to me step by step in a very clear way..i cannot catch your 3 points!
SVP
SVP
Joined: 17 Nov 2007
Posts: 2408
Own Kudos [?]: 10035 [14]
Given Kudos: 361
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
12
Kudos
2
Bookmarks
Expert Reply
marcodonzelli wrote:
OA is C, good...anyway, provided I am quite bad at combs, would you please explain it to me step by step in a very clear way..i cannot catch your 3 points!


let 1,2,3,4,5 are people.
"_ _ _ _ _" - positions

1. we fix position of 1
"_ _ 1 _ _"

2. we have 4*3=12 possible positions for left and right neighbors of 1.
"_ x 1 _ _" x e {2,3,4,5}. 4 variants
"_ x 1 y _" y e {(2,3,4,5} - {x}. 3 variants

total number of variants is 4*3=12

3. for each position of x1y we have 2 possible positions for last two people: ax1yb and bx1ya.
or
"a x 1 y _" a e {(2,3,4,5} - {x,y}. 2 variants
"a x 1 y b" b e {(2,3,4,5} - {x,y,a}. 1 variants


Therefore, N=12*2=24
avatar
Manager
Manager
Joined: 27 Oct 2008
Posts: 97
Own Kudos [?]: 295 [7]
Given Kudos: 3
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
5
Kudos
2
Bookmarks
At a dinner party, 5 people are to be seated around a circular table. 2 seating arrangements are considered different only when the positions of the people are different relative to each other. what is the total number of different possible seating arrangements for the group?

A. 5
B. 10
C. 24
D. 32
E. 120

Soln: Since the arrangement is circular and 2 seating arrangements are considered different only when the positions of the people are different relative to each other, we can find the total number of possible seating arrangements, by fixing one person's position and arranging the others.

Thus if one person's position is fixed, the others can be arranged in 4! ways.
Ans is C.
User avatar
Manager
Manager
Joined: 10 Sep 2010
Posts: 91
Own Kudos [?]: 156 [1]
Given Kudos: 7
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
1
Bookmarks
Bunuel wrote:
mybudgie wrote:
At a party, 5 people are to be seated around a circular table; two seating arrangements are considered different only when the positions of the people are different relative to each other. What is the total number of different possible seating arrangements?
A 5
B 10
C 24
D 32
E 120


This is the case of circular arrangement.
The number of arrangements of n distinct objects in a row is given by \(n!\).
The number of arrangements of n distinct objects in a circle is given by \((n-1)!\).

From Gmat Club Math Book (combinatorics chapter):
"The difference between placement in a row and that in a circle is following: if we shift all object by one position, we will get different arrangement in a row but the same relative arrangement in a circle. So, for the number of circular arrangements of n objects we have:

\(R = \frac{n!}{n} = (n-1)!\)"

\((n-1)!=(5-1)!=24\)

Answer: C.

Similar question: combinatrics-86547.html?hilit=relative%20around

Hope it's clear.


I was confused by the wording of the question "only when the positions of the people are different relative to each other".
I knew the formula (n-1)!, but I though that the correct answer would require some limited set of the combinations, defined by "only when the positions of the people are different relative to each other".

Then if the question did not mentioned this special condition of ""only when the positions of the people are different relative to each other", the answer would be 24x5=120. Right?
Math Expert
Joined: 02 Sep 2009
Posts: 92901
Own Kudos [?]: 618697 [1]
Given Kudos: 81586
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
1
Bookmarks
Expert Reply
Fijisurf wrote:
Bunuel wrote:
mybudgie wrote:
At a party, 5 people are to be seated around a circular table; two seating arrangements are considered different only when the positions of the people are different relative to each other. What is the total number of different possible seating arrangements?
A 5
B 10
C 24
D 32
E 120


This is the case of circular arrangement.
The number of arrangements of n distinct objects in a row is given by \(n!\).
The number of arrangements of n distinct objects in a circle is given by \((n-1)!\).

From Gmat Club Math Book (combinatorics chapter):
"The difference between placement in a row and that in a circle is following: if we shift all object by one position, we will get different arrangement in a row but the same relative arrangement in a circle. So, for the number of circular arrangements of n objects we have:

\(R = \frac{n!}{n} = (n-1)!\)"

\((n-1)!=(5-1)!=24\)

Answer: C.

Similar question: combinatrics-86547.html?hilit=relative%20around

Hope it's clear.


I was confused by the wording of the question "only when the positions of the people are different relative to each other".
I knew the formula (n-1)!, but I though that the correct answer would require some limited set of the combinations, defined by "only when the positions of the people are different relative to each other".

Then if the question did not mentioned this special condition of ""only when the positions of the people are different relative to each other", the answer would be 24x5=120. Right?


"the positions of the people are different relative to each other" just means different arrangements (around a circular table). The number of arrangements of n distinct objects in a circle is \((n-1)!=4!=24\), (120 would be the answer if they were arranged in a row).
Tutor
Joined: 16 Oct 2010
Posts: 14817
Own Kudos [?]: 64890 [9]
Given Kudos: 426
Location: Pune, India
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
7
Kudos
2
Bookmarks
Expert Reply
Arranging 3 people (A, B, C) in a row:
A B C, A C B, B A C. B C A, C A B, C B A
3! ways
Why is arranging 3 people in a circle different?

....A
....O
B......C
If I am B, A is to my left, C is to my right.
Look at this one now:

....C
....O
A......B
Here also, A is to my left and C is to my right. In a circle, these are considered a single arrangement because relative to each other, people are still sitting in the same position. This is the general rule in circular arrangement. You use the formula n!/n = (n - 1)! because every n arrangements are considered a single arrangement. e.g. if n = 3, the given 3 arrangements are the same:
.....A ................ C ............... B
.....O ................ O .............. O
B........C ........ A ..... B ..... C........ A

In each of these, if I am B, I am sitting in the same position relative to others. A is to my left and C is to my right.
and these three are the same:
.....C ................ A ............... B
.....O ................ O .............. O
B........A ........ C ..... B ..... A........ C

Here, if I am B, C is to my left and A is to my right. Different from the first three.
Hence no. of arrangements = 3!/3 = 2 only

Here, they have mentioned 'relative to people' only to make it clearer. In a circle, anyway only relative to people arrangements are considered.
You might need to use n! in a circle if they mention that each seat in the circular arrangement is numbered and is hence different etc. Then there are just n distinct seats and n people. If nothing of the sorts is mentioned, you always use the (n - 1)! formula for circular arrangement.
Tutor
Joined: 27 Jan 2013
Posts: 257
Own Kudos [?]: 627 [7]
Given Kudos: 38
GMAT 1: 760 Q47 V48
GMAT 2: 770 Q49 V47
GMAT 3: 780 Q49 V51
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
3
Kudos
4
Bookmarks
Expert Reply
Hi there,

You can treat this as an ordering question except that for a circular arrangement you need to divide by the number of spaces. So in this case:

5!/5=24

If you spin the circle to right, that doesn't count as a new arrangement. Dividing by the number of spaces takes that into consideration.

Happy Studies,

HG.
Tutor
Joined: 16 Oct 2010
Posts: 14817
Own Kudos [?]: 64890 [2]
Given Kudos: 426
Location: Pune, India
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
2
Kudos
Expert Reply
Val1986 wrote:
At a dinner party 5 people are to be seated around a circular table. Two sitting arrangements are considered different only when the positions of the people are different relative to each other.What is the total number of possible sitting arrangements or the group?

A. 5
B. 10
C. 24
D. 32
E. 120


Please check my signature for the link to the relevant blog posts.

Originally posted by KarishmaB on 24 Mar 2013, 22:01.
Last edited by KarishmaB on 11 Oct 2022, 02:25, edited 1 time in total.
User avatar
Manager
Manager
Joined: 15 Aug 2013
Posts: 180
Own Kudos [?]: 330 [0]
Given Kudos: 23
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
VeritasPrepKarishma wrote:
Val1986 wrote:
At a dinner party 5 people are to be seated around a circular table. Two sitting arrangements are considered different only when the positions of the people are different relative to each other.What is the total number of possible sitting arrangements or the group?

A. 5
B. 10
C. 24
D. 32
E. 120


Check out this post on circular arrangements. It discusses why the number of arrangements is n!/n (which is the same as (n-1)!) in case there are n people sitting around a round table.
https://www.gmatclub.com/forum/veritas-prep-resource-links-no-longer-available-399979.html#/2011/10 ... angements/

It also discusses the relevance of this statement in the question: "Two sitting arrangements are considered different only when the positions of the people are different relative to each other"


Hi Karishma,

If there were constraints such as A can't be next to B or C, does that mean that we now have 5 seats but since 3 of them are fixed, the solution would be 2!/2?
Tutor
Joined: 16 Oct 2010
Posts: 14817
Own Kudos [?]: 64890 [3]
Given Kudos: 426
Location: Pune, India
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
2
Kudos
1
Bookmarks
Expert Reply
russ9 wrote:

Hi Karishma,

If there were constraints such as A can't be next to B or C, does that mean that we now have 5 seats but since 3 of them are fixed, the solution would be 2!/2?


I am assuming your question is this:
5 people are to be seated around a circular table such that A sits neither next to B nor next to C. How many arrangements are possible?

I don't know how you consider "...3 of them are fixed".

The way you handle this constraint would be this:

There are 5 vacant seats. Make A occupy 1 seat in 1 way (because all seats are same before anybody sits).
Now we have 4 unique vacant seats (unique with respect to A) and 4 people.
B and C cannot sit next to A so D and E occupy the seats right next to A on either side. This can be done in 2! ways: D A E or E A D

B and C occupy the two unique seats away from A. This can be done in 2! ways.

Total number of arrangements = 2! * 2! = 4

Originally posted by KarishmaB on 23 Apr 2014, 20:18.
Last edited by KarishmaB on 17 Oct 2022, 00:39, edited 1 time in total.
User avatar
Intern
Intern
Joined: 21 Feb 2015
Posts: 10
Own Kudos [?]: 5 [0]
Given Kudos: 11
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
Please provide feedback to see if this makes sense:

I approached it thinking, if you have a circle, say, ABCDE there would be 5! ways of arranging, however, the question states that an arrangement is only different if the positions relative to each other are different.

So (1/5)th of the time each person in the circle would in the same position relative to another person. Therefore I did (1/5)x5! = 24

I was thinking "symmetry" as well - what are the experts thoughts on this? The formula though is definitely the easier way.
GMAT Club Legend
GMAT Club Legend
Joined: 19 Dec 2014
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Posts: 21846
Own Kudos [?]: 11664 [0]
Given Kudos: 450
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
Expert Reply
Hi icetray,

Your thinking on this question is just fine. Conceptually, since we're dealing with a circular table with 5 chairs (and not a row of chairs), the table could have 5 different "starting chairs." As such the arrangements (going around the table):

ABCDE
BCDEA
CDEAB
DEABC
EABCD

Are all the same arrangement (just 'revolved' around the table). Since we're NOT allowed to count each of those (they're not different arrangements, they're just rotations of the same arrangement), we have to divide the permutation by 5.

5!/5 = 24

This type of 'set-up' is relatively rare on Test Day - there's a pretty good chance that you won't see it at all. If you do though, then your way of handling the "math" is just as viable as the formula that was given.

GMAT assassins aren't born, they're made,
Rich
Target Test Prep Representative
Joined: 14 Oct 2015
Status:Founder & CEO
Affiliations: Target Test Prep
Posts: 18753
Own Kudos [?]: 22043 [2]
Given Kudos: 283
Location: United States (CA)
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
2
Kudos
Expert Reply
Val1986 wrote:
At a dinner party 5 people are to be seated around a circular table. Two sitting arrangements are considered different only when the positions of the people are different relative to each other.What is the total number of possible sitting arrangements or the group?

A. 5
B. 10
C. 24
D. 32
E. 120


When determining the number way to arrange a group around a circle, we subtract 1 from the total and set it to a factorial. Thus, the total number of possible sitting arrangements for 5 people around a circular table is 4! = 24.

Answer: C
Intern
Intern
Joined: 15 Oct 2019
Posts: 1
Own Kudos [?]: 0 [0]
Given Kudos: 1
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
Hi,
I'm not so sure about the (n-1)! way. Since the question stated that "Two seating arrangements are considered different only when the positions of the people are different relative to each other", wasn't this formula still count some invalid possibilities, for example:
if we have 5 people, namely A,B,C,D,E. The arrangements of ABCDE or ACBDE will be counted as 2 different arrangements by the (n-1)! formula right?
but the positions of D relatively to E or A in these cases are not different.
Am I wrong somewhere?
Manager
Manager
Joined: 14 Mar 2020
Status:Having fun Growing Mental Agility & Toughness (GMAT) ^_^
Posts: 58
Own Kudos [?]: 125 [0]
Given Kudos: 315
Mantra: "There is a will, there is a way."
GMAT 1: 660 Q47 V35 (Online)
GMAT 2: 720 Q47 V42
GMAT 3: 740 Q49 V41
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
Bunuel: really appreciate the "Questions about this concept to practice:" section! Super helpful to solidify concepts! :thumbsup:
Wish all Qs have this... For other questions that don't, is there a quick way I can dig out similar questions-as you did here? :roll:
Math Expert
Joined: 02 Sep 2009
Posts: 92901
Own Kudos [?]: 618697 [1]
Given Kudos: 81586
Send PM
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
1
Kudos
Expert Reply
Victorz wrote:
Bunuel: really appreciate the "Questions about this concept to practice:" section! Super helpful to solidify concepts! :thumbsup:
Wish all Qs have this... For other questions that don't, is there a quick way I can dig out similar questions-as you did here? :roll:


You can check SIMILAR TOPICS block at the bottom of a page, for similar questions.
GMAT Club Bot
Re: At a dinner party, 5 people are to be seated around a circular table. [#permalink]
 1   2   
Moderators:
Math Expert
92901 posts
Senior Moderator - Masters Forum
3137 posts

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne