Last visit was: 19 Nov 2025, 17:22 It is currently 19 Nov 2025, 17:22
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
jakolik
Joined: 16 Apr 2010
Last visit: 01 Nov 2012
Posts: 140
Own Kudos:
657
 [70]
Given Kudos: 12
Posts: 140
Kudos: 657
 [70]
1
Kudos
Add Kudos
69
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,370
 [41]
14
Kudos
Add Kudos
27
Bookmarks
Bookmark this Post
General Discussion
avatar
abhijeetkarkare
Joined: 15 May 2010
Last visit: 10 Jan 2011
Posts: 2
Posts: 2
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,370
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,370
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
abhijeetkarkare
Dear Bunuel,
Can you explain why in a circle it is (n-1)!

From Gmat Club Math Book (combinatorics chapter):

"The difference between placement in a row and that in a circle is following: if we shift all object by one position, we will get different arrangement in a row but the same relative arrangement in a circle. So, for the number of circular arrangements of n objects we have:

\(R = \frac{n!}{n} = (n-1)!\)"

Check Combinatorics chapter of Math Book (link in my signature).

Hope it's clear.
User avatar
ichha148
Joined: 16 Apr 2009
Last visit: 23 Feb 2023
Posts: 135
Own Kudos:
Given Kudos: 14
Posts: 135
Kudos: 488
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel , Can you please explain this part

There will be 7 possible places for women between them


M1_ M2_M3_M4_M5_M6_M7 - i counted 6 possible places , where did i miss ?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,370
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ichha148
Bunuel , Can you please explain this part

There will be 7 possible places for women between them


M1_ M2_M3_M4_M5_M6_M7 - i counted 6 possible places , where did i miss ?

Men are placed around a circular table so there will be one more place between M7 and M1.
User avatar
mainhoon
Joined: 18 Jul 2010
Last visit: 10 Oct 2013
Posts: 534
Own Kudos:
Given Kudos: 15
Status:Apply - Last Chance
Affiliations: IIT, Purdue, PhD, TauBetaPi
Concentration: $ Finance $
Schools:Wharton, Sloan, Chicago, Haas
GPA: 4.0
WE 1: 8 years in Oil&Gas
Posts: 534
Kudos: 392
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
jakolik
Seven men and five women have to sit around a circular table so that no 2 women are together. In how many different ways can this be done?

# of arrangements of 7 men around a table is \((7-1)!=6!\);
There will be 7 possible places for women between them, 7 empty slots. # of ways to choose in which 5 slots women will be placed is \(C^5_7=21\);
# of arrangements of 5 women in these slots is \(5!\);

So total: \(6!*21*5!=1,814,400\).

Answer: 1,814,400.

jakolik please post PS questions in PS forum and also try to provide answer choices.

Bunuel

I understand the 6! part for the #ofmen arrangements. However for the #of women arrangements you use 7C5. I see there are 7 slots available and 5 women.
- For the women we are essentially using nPr = nCr r! arrangements.
- Let me extend the argument - if there were 7 women, then the #of arrangements for women by the nCr r! logic would be 7C7 7!=7!, however it would seem that we should be using the (r-1)!= 6! (similar to men) for the women too. What am I missing. Thanks
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,370
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,370
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
mainhoon
Bunuel
jakolik
Seven men and five women have to sit around a circular table so that no 2 women are together. In how many different ways can this be done?

# of arrangements of 7 men around a table is \((7-1)!=6!\);
There will be 7 possible places for women between them, 7 empty slots. # of ways to choose in which 5 slots women will be placed is \(C^5_7=21\);
# of arrangements of 5 women in these slots is \(5!\);

So total: \(6!*21*5!=1,814,400\).

Answer: 1,814,400.

jakolik please post PS questions in PS forum and also try to provide answer choices.

Bunuel

I understand the 6! part for the #ofmen arrangements. However for the #of women arrangements you use 7C5. I see there are 7 slots available and 5 women.
- For the women we are essentially using nPr = nCr r! arrangements.
- Let me extend the argument - if there were 7 women, then the #of arrangements for women by the nCr r! logic would be 7C7 7!=7!, however it would seem that we should be using the (r-1)!= 6! (similar to men) for the women too. What am I missing. Thanks

So basically you are saying that women are also placed in a circle and we should use \((n-1)!\) formula. The reason we use \((n-1)!\) for circular arrangements is that when we shift all \(n\) objects by one position, we still would have the same arrangement of all objects relative to each other.

But consider different situation: a table with 6 chairs where every second chair is already taken by men. Now, if we place women in empty places we would have one arrangement BUT if we shift these women by one position we would have different arrangement as relative position of 6 changed. So # of different arrangements in this case would be 3! not 2!.

Hope it's clear.
User avatar
NGGMAT
Joined: 20 Oct 2013
Last visit: 26 May 2014
Posts: 37
Own Kudos:
Given Kudos: 27
Posts: 37
Kudos: 10
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
jakolik
Seven men and five women have to sit around a circular table so that no 2 women are together. In how many different ways can this be done?

# of arrangements of 7 men around a table is \((7-1)!=6!\);
There will be 7 possible places for women between them, 7 empty slots. # of ways to choose in which 5 slots women will be placed is \(C^5_7=21\);
# of arrangements of 5 women in these slots is \(5!\);

So total: \(6!*21*5!=1,814,400\).

Answer: 1,814,400.

Dear Bunnel

the qs only says that the Women should not sit next 2 each other... but men can right? so y are we assuming

M_M_M_M_M_M_M_ : 14 Places

we can also have:

M_M_M_M_M_MMM: 12 places
MMM_M_M_M_M_M: 12 places

in this case the answer will be:

6!*5! right??
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,370
Kudos
Add Kudos
Bookmarks
Bookmark this Post
NGGMAT
Bunuel
jakolik
Seven men and five women have to sit around a circular table so that no 2 women are together. In how many different ways can this be done?

# of arrangements of 7 men around a table is \((7-1)!=6!\);
There will be 7 possible places for women between them, 7 empty slots. # of ways to choose in which 5 slots women will be placed is \(C^5_7=21\);
# of arrangements of 5 women in these slots is \(5!\);

So total: \(6!*21*5!=1,814,400\).

Answer: 1,814,400.

Dear Bunnel

the qs only says that the Women should not sit next 2 each other... but men can right? so y are we assuming

M_M_M_M_M_M_M_ : 14 Places

we can also have:

M_M_M_M_M_MMM: 12 places
MMM_M_M_M_M_M: 12 places

in this case the answer will be:

6!*5! right??

Not sure I can follow you...

Those 12 people are around a circular table. So, when no 2 women are together, at least 2 men must be together.
User avatar
NGGMAT
Joined: 20 Oct 2013
Last visit: 26 May 2014
Posts: 37
Own Kudos:
Given Kudos: 27
Posts: 37
Kudos: 10
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
NGGMAT
jakolik
Seven men and five women have to sit around a circular table so that no 2 women are together. In how many different ways can this be done?

Dear Bunnel

the qs only says that the Women should not sit next 2 each other... but men can right? so y are we assuming

M_M_M_M_M_M_M_ : 14 Places

we can also have:

M_M_M_M_M_MMM: 12 places
MMM_M_M_M_M_M: 12 places

in this case the answer will be:

6!*5! right??

Not sure I can follow you...

Those 12 people are around a circular table. So, when no 2 women are together, at least 2 men must be together.

yes, so in this case the solution will be 6! * 5! right?? how is this different from your solution.... our purpose of 2 women not being together can be solved like this also??
basically where did you get 21 from in 6! * 5! * 21 solution provided by you for the above problem
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,370
 [2]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,370
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
NGGMAT
Bunuel
NGGMAT
Seven men and five women have to sit around a circular table so that no 2 women are together. In how many different ways can this be done?

Dear Bunnel

the qs only says that the Women should not sit next 2 each other... but men can right? so y are we assuming

M_M_M_M_M_M_M_ : 14 Places

we can also have:

M_M_M_M_M_MMM: 12 places
MMM_M_M_M_M_M: 12 places

in this case the answer will be:

6!*5! right??

Not sure I can follow you...

Those 12 people are around a circular table. So, when no 2 women are together, at least 2 men must be together.

yes, so in this case the solution will be 6! * 5! right?? how is this different from your solution.... our purpose of 2 women not being together can be solved like this also??
basically where did you get 21 from in 6! * 5! * 21 solution provided by you for the above problem

No.

Imagine 7 men around a table so that there is an empty slot between any two:
Attachment:
Table.png
Table.png [ 4.54 KiB | Viewed 28092 times ]
We'll have 7 slots (blue dots) but we have only 5 women. Now, those 5 can take any of the 7 available slots (and in this case no two women will be together). The number of way to choose 5 out of 7 is \(C^5_7=21\).
User avatar
JusTLucK04
User avatar
Retired Moderator
Joined: 17 Sep 2013
Last visit: 27 Jul 2017
Posts: 272
Own Kudos:
Given Kudos: 139
Concentration: Strategy, General Management
GMAT 1: 730 Q51 V38
WE:Analyst (Consulting)
Products:
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Awesome approach Bunuel...
Why is this wrong neways: 12 Guys..No of ways 11!
Take 2 Women and bind them together...Now 11 guys and no of arrangements is 10!*2!
This covers all arrangements with at least 2 women together....

No of arrangements for no women together is: 11!- 10!*2! ---> wrong answer
Why?
User avatar
mittalg
Joined: 17 May 2014
Last visit: 07 Apr 2015
Posts: 28
Own Kudos:
112
 [2]
Given Kudos: 3
Posts: 28
Kudos: 112
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
JusTLucK04
Awesome approach Bunuel...
Why is this wrong neways: 12 Guys..No of ways 11!
Take 2 Women and bind them together...Now 11 guys and no of arrangements is 10!*2!
This covers all arrangements with at least 2 women together....

No of arrangements for no women together is: 11!- 10!*2! ---> wrong answer
Why?


The error is in 10!*2!. This is not taking into account which 2 women are together. This is always done when you know that which two persons are together. For example, if a question says that A & B should always be together, then only you can do it. Now they are not specifying any particular group of women. Hence, this approach will lead you to a wrong answer. Had there been only 2 women in the above question, then your approach would have worked well. If we had 7 men and two women and the rest of the question is same, we would get an answer as:

Approach 1: 6! * 7C2 * 2! = 7! *6

Approach 2: 8! - 7!2! = 6*7!

I hope you get my point.

If you try to apply this approach, you have to first fix those two women who are together, which can be done in 5C2 ways. But when you are arranging them, there would be a case when three women W1W2W3 are together which is included multiple number of times. You have to subtract these cases, which is a very tedious process and hence unproductive.
User avatar
PiyushK
Joined: 22 Mar 2013
Last visit: 31 Aug 2025
Posts: 598
Own Kudos:
4,978
 [3]
Given Kudos: 235
Status:Everyone is a leader. Just stop listening to others.
Location: India
GPA: 3.51
WE:Information Technology (Computer Software)
Products:
Posts: 598
Kudos: 4,978
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
I visualize these arrangements as following:
Attachment:
Roundarrangement.jpg
Roundarrangement.jpg [ 110.03 KiB | Viewed 18517 times ]
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,001
 [2]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
jakolik
Seven men and five women have to sit around a circular table so that no 2 women are together. In how many different ways can this be done?

Quote:

the qs only says that the Women should not sit next 2 each other... but men can right? so y are we assuming

M_M_M_M_M_M_M_ : 14 Places

we can also have:

M_M_M_M_M_MMM: 12 places
MMM_M_M_M_M_M: 12 places

in this case the answer will be:

6!*5! right??

Also, i am not understanding how Bunnel got 21!

Yes, men can sit together but women cannot.

Don't assume places to be empty chairs. Think of a big round table. Each person who comes and sits around the table, brings his/her own chair along. Say the 7 men come and sit around the round table. They will be able to do that in 6! ways. Now, there is space between each pair of men. How many distinct spaces are there? 7 because there are 7 men say M1, M2, M3 till M7. So now you have empty space to the right of M1 and right of M2 and right of M3 etc. The women can take any 5 of these 7 spaces. Note that 2 women cannot take the same space because two women cannot sit together.

Say, the 5 women took 5 spots each to the right of M1, M2, M3, M4 and M5. So now spaces to the right of M6 and M7 are vacant. This means M6, M7 and M1 are sitting together with no one in between them. This takes care of the cases you have pointed out. So when we select 5 of the 7 spaces, we take care of all cases.

In how many ways can 7 men sit around a circular table? In 6! ways.
In how many ways that women select 5 of the 7 distinct places and arrange themselves in those places? In 7C5 * 5! ways.

Total arrangements = 6!* 7C5 * 5!
avatar
VIVA1060
avatar
Current Student
Joined: 22 Jun 2019
Last visit: 01 Aug 2025
Posts: 44
Own Kudos:
Given Kudos: 149
Location: India
Schools: LBS '24 (A)
GPA: 4
Schools: LBS '24 (A)
Posts: 44
Kudos: 13
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi VeritasKarishma Bunuel

- I started with women first: Arranged in 4! ways
- Then I arranged 5 men: 7C5*5!
- Then for the remaining 2 men, we can arrange them in 10C2 men

= 4! * 7C5 * 5! * 10C2 = 2,721,600

Can you please help me understand where I am going wrong?
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VIVA1060
Hi VeritasKarishma Bunuel

- I started with women first: Arranged in 4! ways
- Then I arranged 5 men: 7C5*5!
- Then for the remaining 2 men, we can arrange them in 10C2 men

= 4! * 7C5 * 5! * 10C2 = 2,721,600

Can you please help me understand where I am going wrong?

You are double counting cases.

Say 7C5 you pick M1, M2, M3, M4 and M5.
Now, 10C2, you pick the spot to the right of M1 for M6.

Or
Say 7C5 you pick M6, M2, M3, M4 and M5.
Now, 10C2, you pick the spot to the left of M6 for M1.

You are counting these as two different cases though they are not.

Whenever you choose some from a group and then choose again from the leftover group to arrange all together, keep the double counting issue in mind.
avatar
AbhaGanu
Joined: 09 Jun 2018
Last visit: 21 Aug 2021
Posts: 52
Own Kudos:
Given Kudos: 87
Posts: 52
Kudos: 4
Kudos
Add Kudos
Bookmarks
Bookmark this Post
@Bunnel how is this calculated C^5...down 7 = 21
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,370
 [2]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,370
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
 1   2   
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts