Last visit was: 10 Jul 2025, 20:27 It is currently 10 Jul 2025, 20:27
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
avatar
eladshush
Joined: 01 Sep 2010
Last visit: 04 Oct 2010
Posts: 19
Own Kudos:
286
 [36]
Given Kudos: 8
Posts: 19
Kudos: 286
 [36]
5
Kudos
Add Kudos
31
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 Jul 2025
Posts: 102,631
Own Kudos:
740,219
 [9]
Given Kudos: 98,170
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,631
Kudos: 740,219
 [9]
3
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
General Discussion
User avatar
shrouded1
User avatar
Retired Moderator
Joined: 02 Sep 2010
Last visit: 29 Apr 2018
Posts: 609
Own Kudos:
3,126
 [3]
Given Kudos: 25
Location: London
 Q51  V41
Products:
Posts: 609
Kudos: 3,126
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
User avatar
GMATinsight
User avatar
Major Poster
Joined: 08 Jul 2010
Last visit: 09 Jul 2025
Posts: 6,375
Own Kudos:
15,575
 [2]
Given Kudos: 128
Status:GMAT/GRE Tutor l Admission Consultant l On-Demand Course creator
Location: India
GMAT: QUANT+DI EXPERT
Schools: IIM (A) ISB '24
GMAT 1: 750 Q51 V41
WE:Education (Education)
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Schools: IIM (A) ISB '24
GMAT 1: 750 Q51 V41
Posts: 6,375
Kudos: 15,575
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
eladshush
Seven family members are seated around their circular dinner table. If only arrangements that are considered distinct are those where family members are seated in different locations relative to each other, and Michael and Bobby insist on sitting next to one another, then how many distinct arrangements around the table are possible?

A. 120
B. 240
C. 360
D. 480
E. 720

Lets consider Michael and Bobby as one individual and fix their position so that all the members do NOT move together while they remain in same order relatively


Now after fixing Michael and Bobby we have 5 other member left to change their positions among themselves which can change positions in 5! ways

but Michael and Bobby and exchange positions between the two in 2! ways'

Hence, Total ways of different arrangements = 5!*2! = 120*2 = 240

Answer: Option B
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 10 Jul 2025
Posts: 21,070
Own Kudos:
26,130
 [2]
Given Kudos: 296
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,070
Kudos: 26,130
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
eladshush
Seven family members are seated around their circular dinner table. If only arrangements that are considered distinct are those where family members are seated in different locations relative to each other, and Michael and Bobby insist on sitting next to one another, then how many distinct arrangements around the table are possible?

A. 120
B. 240
C. 360
D. 480
E. 720

If Bobby and Michael must sit next to each other, we treat them as a single entity, and that leaves us with 6 total spots to arrange. Using the circular permutations formula (n - 1)!, we have

(6 - 1)! = 5! = 120 ways to arrange the family members with Bobby and Michael together.

However, we also must include the number of ways to arrange Bobby and Michael, which is 2P2 = 2! = 2.

So, in total, we have:

(6 - 1)! * 2! = 120 x 2 = 240

Answer: B
User avatar
Abhishek009
User avatar
Board of Directors
Joined: 11 Jun 2011
Last visit: 21 Apr 2025
Posts: 5,965
Own Kudos:
Given Kudos: 463
Status:QA & VA Forum Moderator
Location: India
GPA: 3.5
WE:Business Development (Commercial Banking)
Posts: 5,965
Kudos: 5,155
Kudos
Add Kudos
Bookmarks
Bookmark this Post
eladshush
Seven family members are seated around their circular dinner table. If only arrangements that are considered distinct are those where family members are seated in different locations relative to each other, and Michael and Bobby insist on sitting next to one another, then how many distinct arrangements around the table are possible?

A. 120
B. 240
C. 360
D. 480
E. 720
\((6 - 1 )!*2!\)

\(= 5!*2!\)

\(= 240\), Answer must be (B)
User avatar
aash932
Joined: 03 Jun 2020
Last visit: 16 Jun 2024
Posts: 36
Own Kudos:
Given Kudos: 161
Posts: 36
Kudos: 7
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
eladshush
Seven family members are seated around their circular dinner table. If only arrangements that are considered distinct are those where family members are seated in different locations relative to each other, and Michael and Bobby insist on sitting next to one another, then how many distinct arrangements around the table are possible?

A. 120
B. 240
C. 360
D. 480
E. 720

Glue Michael and Bobby so that they create one unit, so we would have total of 6 units: {1}{2}{3}{4}{5}{MB} --> # of different arrangements of \(n\) objects around the table (circular arrangements) is is \((n-1)!\), so our 6 objects can be arranged in \((6-1)!=5!\).

On the other hand Michael and Bobby in 2! ways --> total \(5!*2!=240\).

Answer: B.

Similar question also posted by you: https://gmatclub.com/forum/ways-to-sit-a ... 02187.html

I also did in the same manner and this method is very quick.
User avatar
Paras96
Joined: 11 Sep 2022
Last visit: 30 Dec 2023
Posts: 488
Own Kudos:
Given Kudos: 2
Location: India
Paras: Bhawsar
GMAT 1: 590 Q47 V24
GMAT 2: 580 Q49 V21
GMAT 3: 700 Q49 V35
GPA: 3.2
WE:Project Management (Other)
GMAT 3: 700 Q49 V35
Posts: 488
Kudos: 278
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Using the circular permutation concept,

Without any restriction, no. of ways arrangement = 6!

With restriction, no. of ways arrangement = (6-1)!*2!=5!*2!=120*2=240

Hence B
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 37,380
Own Kudos:
Posts: 37,380
Kudos: 1,010
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
102631 posts
PS Forum Moderator
686 posts