Last visit was: 19 Nov 2025, 20:15 It is currently 19 Nov 2025, 20:15
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
avatar
eladshush
Joined: 01 Sep 2010
Last visit: 04 Oct 2010
Posts: 19
Own Kudos:
289
 [51]
Given Kudos: 8
Posts: 19
Kudos: 289
 [51]
7
Kudos
Add Kudos
44
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,384
 [24]
8
Kudos
Add Kudos
16
Bookmarks
Bookmark this Post
General Discussion
User avatar
vinay.kaipra
Joined: 07 Oct 2006
Last visit: 06 Nov 2010
Posts: 43
Own Kudos:
Given Kudos: 3
Location: India
Posts: 43
Kudos: 29
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
shrouded1
User avatar
Retired Moderator
Joined: 02 Sep 2010
Last visit: 29 Apr 2018
Posts: 609
Own Kudos:
3,191
 [2]
Given Kudos: 25
Location: London
Products:
Posts: 609
Kudos: 3,191
 [2]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
eladshush
In how many different ways can 4 ladies and 4 gentlemen be seated at a round table so that all ladies sit together?

A. 70
B. 288
C. 576
D. 10,080
E. 20,160

Treat the 4 ladies as one object, now you have 5 objects to arrange around a table (m1,m2,m3,m4,women). This can be done in (5-1)! ways
And there are 4! ways to arrange ladies among themselves

Answer = (4!)^2 = 576 or C
User avatar
usre123
Joined: 30 Mar 2013
Last visit: 25 Nov 2022
Posts: 74
Own Kudos:
Given Kudos: 197
Location: United States
GMAT 1: 760 Q50 V44
GMAT 1: 760 Q50 V44
Posts: 74
Kudos: 224
Kudos
Add Kudos
Bookmarks
Bookmark this Post
For concept's sake, if we were to do this the opposite way, how would we do it? Say we have (8-1)! of arranging without any conditions. Then it should be 7! - number of ways 2 women can sit together - number of ways three can sit together.

so for number of ways two can sit together I get: (4-1)! and then 4C3 (in how many ways can we place 3 women in 4 slots, since I tied two together * 2)

Number of ways 3 can sit together= seat the men in (4-1)! ways. * 4C2 (in how many ways can two women be placed in 4 slots, since I tied three women together this time)*3! (for the number of arrangements of three women ties together)

This doesn't give me the correct answer. Where have I gone wrong?
User avatar
CEdward
Joined: 11 Aug 2020
Last visit: 14 Apr 2022
Posts: 1,203
Own Kudos:
272
 [1]
Given Kudos: 332
Posts: 1,203
Kudos: 272
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
_ _ _ _ _ _ _ _ <---- 8 spots

Combination:
Since the four women must be together there is 4C4 ways we can choose seats for them.

Permutation:
Among the women, there are 4! ways we can arrange them.
Likewise among men there are 4! ways that they can be arranged

4! x 4! = 576.

Answer is C.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,589
Own Kudos:
Posts: 38,589
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts