Accountant wrote:
The rate of a certain chemical reaction is directly proportional to the square of the concentration of chemical A present and inversely proportional to the concentration of chemical B present. If the concentration of chemical B is increased by 100%, which of the following is closest to the percent change in the concentration of chemical A required to keep the reaction rate unchanged?
A. 100% decrease
B. 50% decrease
C. 40% decrease
D. 40% increase
E. 50% increase
\(rate = {\text{cte}} \cdot \frac{{{{\left[ A \right]}^2}}}{{\left[ B \right]}}\,\,\,\,\,\left( {{\text{cte}} \ne 0} \right)\,\,\,\,\,\,\mathop \Rightarrow \limits^{{\text{rate}}\,\,{\text{unchanged}}} \,\,\,\,\,{\text{cte}} \cdot \frac{{{{\left[ {{A_{\,\,2}}} \right]}^2}}}{{\left[ {{B_{\,2}}} \right]}} = {\text{cte}} \cdot \frac{{{{\left[ {{A_{\,\,1}}} \right]}^2}}}{{\left[ {{B_{\,1}}} \right]}}\,\,\,\,\,\,\,\mathop \Rightarrow \limits^{{\text{cte}}\,\, \ne \,\,{\text{0}}} \,\,\,\,\,\,{\left( {\frac{{\left[ {{A_{\,2}}} \right]}}{{\left[ {{A_{\,1}}} \right]}}} \right)^{\,2}} = \frac{{\left[ {{B_{\,2}}} \right]}}{{\left[ {{B_{\,1}}} \right]}}\)
\(\left[ {{B_{\,2}}} \right] = \left[ {2{B_{\,1}}} \right]\,\,\,\,\,\,;\,\,\,\,\,\,\left[ {{A_{\,2}}} \right] = \left[ {k{A_{\,1}}} \right]\,\,\,\,\,\,\,\left( {k > 0} \right)\)
\(?\,\, \cong \,\,k - 1\)
\({\left( {\frac{{\left[ {{A_{\,2}}} \right]}}{{\left[ {{A_{\,1}}} \right]}}} \right)^{\,2}} = \frac{{\left[ {{B_{\,2}}} \right]}}{{\left[ {{B_{\,1}}} \right]}}\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\left\{ \begin{gathered}
{k^2} = 2 \hfill \\
\sqrt 2 \cong 1.41 \hfill \\
\end{gathered} \right.\,\,\,\,\,\,\,\,\mathop \Rightarrow \limits^{k\,\, > \,\,0} \,\,\,\,\,\,?\,\, = \,\,\sqrt 2 - 1\,\,\, \cong \,\,\,0.41\,\,\, = \,\,\,41\% \,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\sqrt 2 - 1\,\, > 0\,\,\,\, \Rightarrow \,\,\,{\text{increase}}} \right)\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.
_________________
Fabio Skilnik ::
GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here:
https://gmath.net