GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 22 Feb 2019, 20:56

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in February
PrevNext
SuMoTuWeThFrSa
272829303112
3456789
10111213141516
17181920212223
242526272812
Open Detailed Calendar
• ### Free GMAT RC Webinar

February 23, 2019

February 23, 2019

07:00 AM PST

09:00 AM PST

Learn reading strategies that can help even non-voracious reader to master GMAT RC. Saturday, February 23rd at 7 AM PT
• ### FREE Quant Workshop by e-GMAT!

February 24, 2019

February 24, 2019

07:00 AM PST

09:00 AM PST

Get personalized insights on how to achieve your Target Quant Score.

# If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal

Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 53066
If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

### Show Tags

21 Nov 2017, 00:59
00:00

Difficulty:

65% (hard)

Question Stats:

64% (02:13) correct 36% (02:33) wrong based on 226 sessions

### HideShow timer Statistics

If a and b are integers and $$(\sqrt[3]{a}*\sqrt{b})^6 = 500$$, then a + b could equal

A. 2
B. 3
C. 4
D. 5
E. 6

_________________
Intern
Joined: 15 Oct 2017
Posts: 9
Location: India
Concentration: Entrepreneurship, Marketing
Schools: Kellogg '20
Re: If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

### Show Tags

21 Nov 2017, 01:41
By solving LHS, we get a^2*b^3=500
We know 500 = 2^2*5^3

Hence, a=2 b=5
a+b = 7 (Not in the options)
Current Student
Joined: 18 Aug 2016
Posts: 623
Concentration: Strategy, Technology
GMAT 1: 630 Q47 V29
GMAT 2: 740 Q51 V38
Re: If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

### Show Tags

21 Nov 2017, 01:43
1
1
Bunuel wrote:
If a and b are integers and $$(\sqrt[3]{a}*\sqrt{b})^6 = 500$$, then a + b could equal

A. 2
B. 3
C. 4
D. 5
E. 6

a^2 * b^3

now a =2 or -2 and b = 5 (125*4)
-2+5 = 3

B
_________________

We must try to achieve the best within us

Thanks
Luckisnoexcuse

Director
Joined: 31 Jul 2017
Posts: 518
Location: Malaysia
GMAT 1: 700 Q50 V33
GPA: 3.95
WE: Consulting (Energy and Utilities)
Re: If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

### Show Tags

21 Nov 2017, 02:36
Bunuel wrote:
If a and b are integers and $$(\sqrt[3]{a}*\sqrt{b})^6 = 500$$, then a + b could equal

A. 2
B. 3
C. 4
D. 5
E. 6

a^2 * b^3 = (-2)^2 * 5^3 = 2^2 * 5^3

a + b = 3/7

Sent from my Lenovo P1a42 using GMAT Club Forum mobile app
_________________

If my Post helps you in Gaining Knowledge, Help me with KUDOS.. !!

Senior SC Moderator
Joined: 22 May 2016
Posts: 2495
If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

### Show Tags

21 Nov 2017, 18:13
1
Bunuel wrote:
If a and b are integers and $$(\sqrt[3]{a}*\sqrt{b})^6 = 500$$, then a + b could equal

A. 2
B. 3
C. 4
D. 5
E. 6

$$(\sqrt[3]{a}*\sqrt{b})^6 = 500$$

Do the prime factorization for 500: $$2^25^3$$

Rewrite
$$(a^{\frac{1}{3}} * b^{\frac{1}{2}})^6 = 2^2*5^3$$

Distribute the exponent

$$a^{(\frac{1}{3}*6)} * b^{(\frac{1}{2}*6)} = 2^2*5^3$$

$$a^2 * b^3 = 2^2 * 5^3$$

$$a^2 = 2^2 = 4$$

$$\sqrt{a^2} =\sqrt{4}$$
$$a = 2$$ OR
$$a = -2$$

$$b^3 = 5^3$$

$$(\sqrt[3]{b^3}) = (\sqrt[3]{5^3}$$)

$$b = 5$$

$$a + b$$?

$$2 + 5 = 7$$ Not an answer choice
$$-2 + 5 = 3$$

_________________

To live is the rarest thing in the world.
Most people just exist.

Oscar Wilde

Intern
Status: Prepping for GMAT
Joined: 06 Nov 2017
Posts: 22
Location: France
GPA: 4
If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

### Show Tags

22 Nov 2017, 04:49
Bunuel wrote:
If a and b are integers and $$(\sqrt[3]{a}*\sqrt{b})^6 = 500$$, then a + b could equal

A. 2
B. 3
C. 4
D. 5
E. 6

Before people complain that the answer they have found is not in the suggestions of the problem prompt, they need to remember that an integer can be either positive and negative. This was, in my opinion, the main trap with this problem.

We have: $$(\sqrt[3]{a}*\sqrt{b})^6 = 500$$ (A)

This equality is too complex for my tastes, let's simplify it while keeping in mind that:

1/ $$\sqrt{x} = x^\frac{1}{2}$$
2/ $$\sqrt[y]{x} = x^\frac{1}{y}$$
3/ $$(a*b)^c = a^c * b^c$$

Therefore, using the first 3 properties above, A becomes:
$$(\sqrt[3]{a}*\sqrt{b})^6 = (a^\frac{1}{3} * b^\frac{1}{2})^6 = a^2 * b^3 = 500$$ (B)

If we decompose 500 into its prime components, we get $$500 = 2^2*5^3$$

Thus B can be written as: $$a^2 * b^3 = 2^2*5^3$$

At this stage, we're tempted to say that $$a = 2$$ and $$b = 5$$ and thus complain that $$a+b = 7$$ isn't in the choices.

Or, we can remember that even exponents remove the negative sign from negative integers and deduce that the only solution possible is $$a = -2$$ and $$b = 5$$ (since odd exponents keep the negative sign of negative integers and since 500 is positive, it follows that b can never be negative).

Thus, $$a + b = 3$$ i.e. answer B.
Target Test Prep Representative
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2827
Re: If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

### Show Tags

27 Nov 2017, 10:49
Bunuel wrote:
If a and b are integers and $$(\sqrt[3]{a}*\sqrt{b})^6 = 500$$, then a + b could equal

A. 2
B. 3
C. 4
D. 5
E. 6

We can rewrite the expression:

[(a^1/3) x (b^1/2)]^6 = 500

a^2 x b^3 = 500

a^2 x b^3 = 2^2 x 5^3

Thus a could be 2 and b could be 5, and a + b = 7. However, notice that a^2 = 2^2 = 4, so a could be -2 also. In that case, a + b = -2 + 5 = 3.

_________________

Jeffery Miller

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Director
Joined: 31 Jul 2017
Posts: 518
Location: Malaysia
GMAT 1: 700 Q50 V33
GPA: 3.95
WE: Consulting (Energy and Utilities)
Re: If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

### Show Tags

27 Jan 2018, 07:28
Bunuel wrote:
If a and b are integers and $$(\sqrt[3]{a}*\sqrt{b})^6 = 500$$, then a + b could equal

A. 2
B. 3
C. 4
D. 5
E. 6

The given equation can be written as,

$$a^2 * b^3 = 5^3 * 2^2 = 5^3 * (-2)^2$$

So, $$a + b = 7$$ or $$3.$$ Hence, option B.

Please give Kudos, if it helps you in Preparing for GMAT.
_________________

If my Post helps you in Gaining Knowledge, Help me with KUDOS.. !!

Intern
Joined: 31 Dec 2017
Posts: 28
Concentration: Finance
Re: If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

### Show Tags

27 Jan 2018, 18:32
Bunuel wrote:
If a and b are integers and $$(\sqrt[3]{a}*\sqrt{b})^6 = 500$$, then a + b could equal

A. 2
B. 3
C. 4
D. 5
E. 6

$$(\sqrt[3]{a}*\sqrt{b})^6 = [\sqrt[3]{a}]^6 * [\sqrt{b}]^6 = [a]^{\frac{6}{3}} * [b]^{\frac{6}{2}} = a^2 * b^3 = 500.$$

$$500 = (2)^2 * (5)^3 = (-2)^2 * (5)^3$$

$$(a+b)$$ could equal $$(2+5) = 7$$, or $$(-2+5) = 3$$. Ans - B.
Re: If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal   [#permalink] 27 Jan 2018, 18:32
Display posts from previous: Sort by