GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 17 Aug 2019, 14:00

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 57025
If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

Show Tags

New post 21 Nov 2017, 01:59
11
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

63% (02:11) correct 37% (02:25) wrong based on 225 sessions

HideShow timer Statistics

Intern
Intern
avatar
B
Joined: 15 Oct 2017
Posts: 8
Location: India
Concentration: Entrepreneurship, Marketing
Schools: Kellogg '20
Re: If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

Show Tags

New post 21 Nov 2017, 02:41
By solving LHS, we get a^2*b^3=500
We know 500 = 2^2*5^3

Hence, a=2 b=5
a+b = 7 (Not in the options)
Current Student
User avatar
P
Joined: 18 Aug 2016
Posts: 615
Concentration: Strategy, Technology
GMAT 1: 630 Q47 V29
GMAT 2: 740 Q51 V38
GMAT ToolKit User Reviews Badge
Re: If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

Show Tags

New post 21 Nov 2017, 02:43
1
1
Bunuel wrote:
If a and b are integers and \((\sqrt[3]{a}*\sqrt{b})^6 = 500\), then a + b could equal

A. 2
B. 3
C. 4
D. 5
E. 6


a^2 * b^3

now a =2 or -2 and b = 5 (125*4)
-2+5 = 3

B
_________________
We must try to achieve the best within us


Thanks
Luckisnoexcuse
Director
Director
avatar
P
Joined: 31 Jul 2017
Posts: 514
Location: Malaysia
Schools: INSEAD Jan '19
GMAT 1: 700 Q50 V33
GPA: 3.95
WE: Consulting (Energy and Utilities)
Re: If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

Show Tags

New post 21 Nov 2017, 03:36
Bunuel wrote:
If a and b are integers and \((\sqrt[3]{a}*\sqrt{b})^6 = 500\), then a + b could equal

A. 2
B. 3
C. 4
D. 5
E. 6

a^2 * b^3 = (-2)^2 * 5^3 = 2^2 * 5^3

a + b = 3/7

Sent from my Lenovo P1a42 using GMAT Club Forum mobile app
_________________
If my Post helps you in Gaining Knowledge, Help me with KUDOS.. !!
Senior SC Moderator
avatar
V
Joined: 22 May 2016
Posts: 3244
If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

Show Tags

New post 21 Nov 2017, 19:13
1
Bunuel wrote:
If a and b are integers and \((\sqrt[3]{a}*\sqrt{b})^6 = 500\), then a + b could equal

A. 2
B. 3
C. 4
D. 5
E. 6

\((\sqrt[3]{a}*\sqrt{b})^6 = 500\)

Do the prime factorization for 500: \(2^25^3\)

Rewrite
\((a^{\frac{1}{3}} * b^{\frac{1}{2}})^6 = 2^2*5^3\)

Distribute the exponent

\(a^{(\frac{1}{3}*6)} * b^{(\frac{1}{2}*6)} = 2^2*5^3\)

\(a^2 * b^3 = 2^2 * 5^3\)

\(a^2 = 2^2 = 4\)

\(\sqrt{a^2} =\sqrt{4}\)
\(a = 2\) OR
\(a = -2\)

\(b^3 = 5^3\)

\((\sqrt[3]{b^3}) = (\sqrt[3]{5^3}\))

\(b = 5\)

\(a + b\)?

\(2 + 5 = 7\) Not an answer choice
\(-2 + 5 = 3\)

Answer B
_________________
SC Butler has resumed!
Get two SC questions to practice, whose links you can find by date, here.

What we do now echoes in eternity.—Marcus Aurelius
Intern
Intern
avatar
B
Status: Prepping for GMAT
Joined: 06 Nov 2017
Posts: 23
Location: France
GPA: 4
If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

Show Tags

New post 22 Nov 2017, 05:49
Bunuel wrote:
If a and b are integers and \((\sqrt[3]{a}*\sqrt{b})^6 = 500\), then a + b could equal

A. 2
B. 3
C. 4
D. 5
E. 6


Before people complain that the answer they have found is not in the suggestions of the problem prompt, they need to remember that an integer can be either positive and negative. This was, in my opinion, the main trap with this problem.

We have: \((\sqrt[3]{a}*\sqrt{b})^6 = 500\) (A)

This equality is too complex for my tastes, let's simplify it while keeping in mind that:

1/ \(\sqrt{x} = x^\frac{1}{2}\)
2/ \(\sqrt[y]{x} = x^\frac{1}{y}\)
3/ \((a*b)^c = a^c * b^c\)

Therefore, using the first 3 properties above, A becomes:
\((\sqrt[3]{a}*\sqrt{b})^6 = (a^\frac{1}{3} * b^\frac{1}{2})^6 = a^2 * b^3 = 500\) (B)

If we decompose 500 into its prime components, we get \(500 = 2^2*5^3\)

Thus B can be written as: \(a^2 * b^3 = 2^2*5^3\)

At this stage, we're tempted to say that \(a = 2\) and \(b = 5\) and thus complain that \(a+b = 7\) isn't in the choices.

Or, we can remember that even exponents remove the negative sign from negative integers and deduce that the only solution possible is \(a = -2\) and \(b = 5\) (since odd exponents keep the negative sign of negative integers and since 500 is positive, it follows that b can never be negative).

Thus, \(a + b = 3\) i.e. answer B.
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2820
Re: If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

Show Tags

New post 27 Nov 2017, 11:49
Bunuel wrote:
If a and b are integers and \((\sqrt[3]{a}*\sqrt{b})^6 = 500\), then a + b could equal

A. 2
B. 3
C. 4
D. 5
E. 6


We can rewrite the expression:

[(a^1/3) x (b^1/2)]^6 = 500

a^2 x b^3 = 500

a^2 x b^3 = 2^2 x 5^3

Thus a could be 2 and b could be 5, and a + b = 7. However, notice that a^2 = 2^2 = 4, so a could be -2 also. In that case, a + b = -2 + 5 = 3.

Answer: B
_________________

Jeffrey Miller

Head of GMAT Instruction

Jeff@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Director
Director
avatar
P
Joined: 31 Jul 2017
Posts: 514
Location: Malaysia
Schools: INSEAD Jan '19
GMAT 1: 700 Q50 V33
GPA: 3.95
WE: Consulting (Energy and Utilities)
Re: If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

Show Tags

New post 27 Jan 2018, 08:28
Bunuel wrote:
If a and b are integers and \((\sqrt[3]{a}*\sqrt{b})^6 = 500\), then a + b could equal

A. 2
B. 3
C. 4
D. 5
E. 6


The given equation can be written as,

\(a^2 * b^3 = 5^3 * 2^2 = 5^3 * (-2)^2\)

So, \(a + b = 7\) or \(3.\) Hence, option B.

Please give Kudos, if it helps you in Preparing for GMAT.
_________________
If my Post helps you in Gaining Knowledge, Help me with KUDOS.. !!
Intern
Intern
User avatar
B
Joined: 31 Dec 2017
Posts: 28
Concentration: Finance
GMAT ToolKit User
Re: If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

Show Tags

New post 27 Jan 2018, 19:32
Bunuel wrote:
If a and b are integers and \((\sqrt[3]{a}*\sqrt{b})^6 = 500\), then a + b could equal

A. 2
B. 3
C. 4
D. 5
E. 6


\((\sqrt[3]{a}*\sqrt{b})^6 = [\sqrt[3]{a}]^6 * [\sqrt{b}]^6 = [a]^{\frac{6}{3}} * [b]^{\frac{6}{2}} = a^2 * b^3 = 500.\)

\(500 = (2)^2 * (5)^3 = (-2)^2 * (5)^3\)

\((a+b)\) could equal \((2+5) = 7\), or \((-2+5) = 3\). Ans - B.
Retired Moderator
User avatar
V
Joined: 27 Oct 2017
Posts: 1246
Location: India
Concentration: International Business, General Management
GPA: 3.64
WE: Business Development (Energy and Utilities)
Re: If a and b are integer and  [#permalink]

Show Tags

New post 20 Apr 2018, 06:14
2
\(500 = 5^3* 2^2\)
Also\(( a^(1/3) *b^(1/2))^6 = a^2*b^3\)
Hence a can be 2, b can be 5.
But a+b =7.
It is not in the option. :?

Bingo: we have forgot the fact that even power changes negative to positive.
Actually a can be +/- 2 :angel:
Now considering a = -2, b =5
Hence a+b = -5+2 =3. Answer B
_________________
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 12006
Re: If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal  [#permalink]

Show Tags

New post 21 Apr 2019, 00:50
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Bot
Re: If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal   [#permalink] 21 Apr 2019, 00:50
Display posts from previous: Sort by

If a and b are integers and (3√a*√b)^6 = 500, then a + b could equal

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne