Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 59588

If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
14 Oct 2015, 21:24
Question Stats:
88% (00:28) correct 12% (00:35) wrong based on 1215 sessions
HideShow timer Statistics
If k^2 = m^2, which of the following must be true? (A) k = m (B) k = −m (C) k = m (D) k = −m (E) k = m Kudos for a correct solution.
Official Answer and Stats are available only to registered users. Register/ Login.
_________________




Target Test Prep Representative
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 8622
Location: United States (CA)

Re: If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
03 May 2016, 08:49
mkarthik1 wrote: If k^2 = m^2, which of the following must be true? A. k = m B. k = m C. k = m D. k = m E. k = m In the above question, Both C and E seem to be correct to me .
The official answer is E. Why should it not be C? can someone please explain.
what is the difference between C and E Solution: We are given that k^2 = m^2, and we can start by simplifying the equation by taking the square root of both sides. √k^2 = √m^2 When we take the square root of a variable squared, the result is the absolute value of that variable. Thus: √k^2 = √m^2 is k = m Note that answer choices A through D could all be true, but each of them would be true only under specific circumstances. Answer choice E is the only one that is universally true. Answer: E
_________________
5star rated online GMAT quant self study course See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews If you find one of my posts helpful, please take a moment to click on the "Kudos" button.




Manager
Status: tough ... ? Naaahhh !!!!
Joined: 08 Sep 2015
Posts: 62
Location: India
Concentration: Marketing, Strategy
WE: Marketing (Computer Hardware)

Re: If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
14 Oct 2015, 21:28
k = m suffice the condition of k^2 = m^2.
so ans: E



Verbal Forum Moderator
Status: Greatness begins beyond your comfort zone
Joined: 08 Dec 2013
Posts: 2435
Location: India
Concentration: General Management, Strategy
GPA: 3.2
WE: Information Technology (Consulting)

Re: If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
14 Oct 2015, 22:21
k^2=m^2 Taking the non negative square root of both sides of the equation , k = m Answer E
_________________
When everything seems to be going against you, remember that the airplane takes off against the wind, not with it.  Henry Ford The Moment You Think About Giving Up, Think Of The Reason Why You Held On So Long



CEO
Status: GMATINSIGHT Tutor
Joined: 08 Jul 2010
Posts: 2977
Location: India
GMAT: INSIGHT
WE: Education (Education)

Re: If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
14 Oct 2015, 22:35
Bunuel wrote: If k^2 = m^2, which of the following must be true?
(A) k = m (B) k = −m (C) k = m (D) k = −m (E) k = m
Kudos for a correct solution. With Even powers of variables the signs can't be predicted about them Hence, We can't say anything about the sign of k and m being positive or negative therefore, Option A, B, C and D are ruled out as all these options are hinting towards specific and known sign of k and/or m For any sign of k and m, their absolute values must be same because k^2 = m^2, therefore, k = m Answer: Option E
_________________
Prosper!!!GMATinsightBhoopendra Singh and Dr.Sushma Jha email: info@GMATinsight.com I Call us : +919999687183 / 9891333772 Online OneonOne Skype based classes and Classroom Coaching in South and West Delhihttp://www.GMATinsight.com/testimonials.htmlACCESS FREE GMAT TESTS HERE:22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION



Math Revolution GMAT Instructor
Joined: 16 Aug 2015
Posts: 8235
GPA: 3.82

Re: If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
15 Oct 2015, 00:11
Forget conventional ways of solving math questions. In PS, IVY approach is the easiest and quickest way to find the answer. If k^2 = m^2, which of the following must be true? (A) k = m (B) k = −m (C) k = m (D) k = −m (E) k = m Since k^2=m^2 we have 0=k^2 – m^2 =(km)*(k+m). So k=m or k=m. So only (A) and only (B) cannot be an answer. The choice (C) tells us that k should be greater than or equal to 0. Similarly the choice (D) tells us that k should be less than or equal to 0. So neither (C) nor (D) cannot be the answer. The answer is, therefore, (E).
_________________
MathRevolution: Finish GMAT Quant Section with 10 minutes to spareThe oneandonly World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy. "Only $79 for 1 month Online Course""Free Resources30 day online access & Diagnostic Test""Unlimited Access to over 120 free video lessons  try it yourself"



Intern
Joined: 08 Aug 2015
Posts: 7

Re: If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
24 Oct 2015, 02:18
Bunuel wrote: If k^2 = m^2, which of the following must be true?
(A) k = m (B) k = −m (C) k = m (D) k = −m (E) k = m
Kudos for a correct solution. As squaring hides the sign of a number, k^2 will equal m^2 for every possible positive/negative combination of the two values. The only statement we can make for sure is therefore (E) k = m.



Director
Status: Professional GMAT Tutor
Affiliations: AB, cum laude, Harvard University (Class of '02)
Joined: 10 Jul 2015
Posts: 715
Location: United States (CA)
Age: 40
GMAT 1: 770 Q47 V48 GMAT 2: 730 Q44 V47 GMAT 3: 750 Q50 V42
WE: Education (Education)

If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
11 Apr 2016, 16:32
Attached is a visual that should help.
Attachments
Screen Shot 20160411 at 4.31.20 PM.png [ 80.7 KiB  Viewed 18811 times ]
_________________
Harvard grad and 99% GMAT scorer, offering expert, private GMAT tutoring and coaching worldwide since 2002. One of the only known humans to have taken the GMAT 5 times and scored in the 700s every time (700, 710, 730, 750, 770), including verified section scores of Q50 / V47, as well as personal bests of 8/8 IR (2 times), 6/6 AWA (4 times), 50/51Q and 48/51V. You can download my official testtaker score report (all scores within the last 5 years) directly from the Pearson Vue website: https://tinyurl.com/y7knw7bt Date of Birth: 09 December 1979. GMAT Action Plan and Free EBook  McElroy TutoringContact: mcelroy@post.harvard.edu (I do not respond to PMs on GMAT Club) or find me on reddit: http://www.reddit.com/r/GMATpreparation



Director
Joined: 02 Sep 2016
Posts: 641

Re: If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
06 Sep 2017, 06:29
Hello BunuelI inferred that square or even power of a number is always positive. Therefore k^2 and m^2 are positive. So k=m, no matter what the signs are. I don't see why in the official guide its mentioned that we need to take root of k^2 and m^2 when we know that ^2 always gives positive number.



Math Expert
Joined: 02 Sep 2009
Posts: 59588

Re: If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
06 Sep 2017, 22:39
Shiv2016 wrote: Hello BunuelI inferred that square or even power of a number is always positive. Therefore k^2 and m^2 are positive. So k=m, no matter what the signs are. I don't see why in the official guide its mentioned that we need to take root of k^2 and m^2 when we know that ^2 always gives positive number. Do not follow what you mean bu the point is that \(\sqrt{x^2}=x\), so if we take the square root from k^2 = m^2, we'll get k = m.
_________________



Director
Joined: 02 Sep 2016
Posts: 641

Re: If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
06 Sep 2017, 22:59
Bunuel wrote: Shiv2016 wrote: Hello BunuelI inferred that square or even power of a number is always positive. Therefore k^2 and m^2 are positive. So k=m, no matter what the signs are. I don't see why in the official guide its mentioned that we need to take root of k^2 and m^2 when we know that ^2 always gives positive number. Do not follow what you mean bu the point is that \(\sqrt{x^2}=x\), so if we take the square root from k^2 = m^2, we'll get k = m. Hi. Sorry for being not so clear I meant to say that even powers ^2,^4, etc. always gives positive outcome no matter what the sign of the base is. For example: (2)^2= 4 and (2)^2= 4 So what I inferred is that k^2 and m^2 are positive (no matter what the sign of k and m are). Therefore we can say that k=m. Is this good?



Math Expert
Joined: 02 Sep 2009
Posts: 59588

Re: If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
06 Sep 2017, 23:05
Shiv2016 wrote: Bunuel wrote: Shiv2016 wrote: Hello BunuelI inferred that square or even power of a number is always positive. Therefore k^2 and m^2 are positive. So k=m, no matter what the signs are. I don't see why in the official guide its mentioned that we need to take root of k^2 and m^2 when we know that ^2 always gives positive number. Do not follow what you mean bu the point is that \(\sqrt{x^2}=x\), so if we take the square root from k^2 = m^2, we'll get k = m. Hi. Sorry for being not so clear I meant to say that even powers ^2,^4, etc. always gives positive outcome no matter what the sign of the base is. For example: (2)^2= 4 and (2)^2= 4 So what I inferred is that k^2 and m^2 are positive (no matter what the sign of k and m are). Therefore we can say that k=m. Is this good? Apart from knowing that the even roots and absolute values give nonnegative result, we should also deduce that from k^2 = m^2 we can get k = m. Else, what would you say if one of the options were k^4 = m? Here both sides are also nonnegative, but can we say from k^2 = m^2 that k^4 = m is true? No.
_________________



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 9850
Location: Pune, India

Re: If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
16 Apr 2018, 10:11
Bunuel wrote: If k^2 = m^2, which of the following must be true?
(A) k = m (B) k = −m (C) k = m (D) k = −m (E) k = m
Kudos for a correct solution. What does \(k^2 = m^2\) imply? Only that k = m (A) k = m Not necessary e.g. k = 5, m = 5 (B) k = −m Not necessary e.g. k = 5, m = 5 (C) k = m Not necessary e.g. k = 5, m = 5 (D) k = −m Not necessary e.g. k = 5, m = 5 (E) k = m Always necessary. Note that absolute values of the two most be equal for the square to be equal. We cannot say anything about their signs though. Answer (E)
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



Intern
Joined: 01 Mar 2019
Posts: 19
Location: United States

Re: If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
08 Mar 2019, 19:02
Using the rule that \(\sqrt{x^2}=x\), the equation can be changed to:
\(\sqrt{k^2} = \sqrt{m^2} \rightarrow k = m\)
Answer E



GMAT Club Legend
Joined: 12 Sep 2015
Posts: 4125
Location: Canada

Re: If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
03 Jun 2019, 05:14
Bunuel wrote: If k^2 = m^2, which of the following must be true?
(A) k = m (B) k = −m (C) k = m (D) k = −m (E) k = m
Kudos for a correct solution. The question asks us what MUST be true. So, if we can find a case where a statement is not true, we can eliminate that answer choice. So, for example, one solution to the equation (k² = m²) is k = 1 and m = 1 Now let's check the answer choices. A. k = m. Test: 1 = 1. Works. Keep A. B. k = m. Test: 1 = 1. DOESN'T WORK. ELIMINATE B. C. k = m. Test: 1 = 1. Works. Keep C. D. k =  m. Test: 1 = 1. DOESN'T WORK. ELIMINATE D. E. k = m. Test: 1 = 1. Works. Keep E. Okay, so the correct answer is A, C or E Let's try another case. Another solution to the equation (k² = m²) is k = 1 and m = 1 Now let's check the remaining answer choices. A. k = m. Test: 1 = 1. DOESN'T WORK. ELIMINATE A. C. k = m. Test: 1 = 1. DOESN'T WORK. ELIMINATE C. E. k = m. Test: 1 = 1. Works. Keep E. By the process of elimination, the correct answer is E Cheers, Brent
_________________
Test confidently with gmatprepnow.com



Manager
Joined: 29 Jun 2018
Posts: 53
Location: India
GPA: 4

Re: If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
23 Jun 2019, 06:03
Bunuel wrote: If k^2 = m^2, which of the following must be true?
(A) k = m (B) k = −m (C) k = m (D) k = −m (E) k = m
Kudos for a correct solution. If K squared equals an M squared, that means that a K is equal to plus or minus M. That basically solves the question, because K is not always M; it's not always minus M; it's not equal to the absolute value of M because K might be a negative, so negative cannot be something that's positive. D says that K, which can either be positive or negative, is always equal to minus of a positive number; well that's not always correct, and E is the correct one because it says that plus a equals a plus.
_________________



SVP
Joined: 03 Jun 2019
Posts: 1876
Location: India

Re: If k^2 = m^2, which of the following must be true?
[#permalink]
Show Tags
13 Sep 2019, 23:03
Bunuel wrote: If k^2 = m^2, which of the following must be true?
(A) k = m (B) k = −m (C) k = m (D) k = −m (E) k = m
Kudos for a correct solution. Given: k^2 = m^2 Asked: Which of the following must be true? If k^2 = m^2 Taking root on both sides k = m IMO E




Re: If k^2 = m^2, which of the following must be true?
[#permalink]
13 Sep 2019, 23:03






