Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Set A, Set B, and Set C each contain only positive integers. [#permalink]

Show Tags

20 Dec 2006, 19:38

8

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

95% (hard)

Question Stats:

44% (01:14) correct
56% (01:31) wrong based on 280 sessions

HideShow timer Statistics

Set A, Set B, and Set C each contain only positive integers. If Set A is composed entirely of all the members of Set B plus all the members of Set C, is the median of Set B greater than the median of Set A?

(1) The mean of Set A is greater than the median of Set B. (2) The median of Set A is greater than the median of Set C.

(1) meanA > medB
------------------------
useless, the mean indicates nothing for finding medians
the mean can be easily misleading if one element is too large or too small

statement 1 is insufficient

(2) medA > medC
----------------------
although this could be a trap to make you think that the large medB cause medA > medC , the question says nothing about the number of elements in sets B and C. So, C could have like 10 elements while be has only 3 elements and thus the median of A could be larger than the median of B
on the other hand, B could have way more elements than C and thus resulting in a median of A smaller than the median of B

statement 2 is insufficient

(1) and (2) together
-----------------------
is still not helpful as the mean in A leads to nothing

Agree with E here. The mean and median are not related in any way that you can devise from the information given, and S1 and S2 provide only comparisons between their supposed relation.
_________________

I got E as well. The mean tells us nothing about the median unless there is another specification (eg. consecutive numbers,etc.) The median could be any number since the question stem does not specify how many numbers are in the set. for example [1,2,3,4,100,1000], the mean can specify a very large number while the median would be 3.5.
_________________

"Any school that meets you and still lets you in is not a good enough school to go to" - my mom upon hearing i got in Thanks mom.

There are 2 imp points here Mean and Median are not related and another is the elements in any of the sets are not fixed so its just impossible to arrive at the answer.

Re: Set A, Set B, and Set C each contain only positive integers. [#permalink]

Show Tags

12 Oct 2013, 17:11

mm007 wrote:

Set A, Set B, and Set C each contain only positive integers. If Set A is composed entirely of all the members of Set B plus all the members of Set C, is the median of Set B greater than the median of Set A?

(1) The mean of Set A is greater than the median of Set B.

(2) The median of Set A is greater than the median of Set C.

Hi experts, this question is indeed very interesting. Could you please share some of your knowledge on properties for statistics in combined sets. I think I remember that for example the median of a combined set has to be between the median of of the subsets combined. But are there any other properties that might be helpful to remember?

Please let us know, or anyone. Will be happy to throw some kudos out there

Re: Set A, Set B, and Set C each contain only positive integers. [#permalink]

Show Tags

17 Oct 2013, 22:27

3

This post received KUDOS

If Med(A) > Med(B), it tells me that the quantities in A are typically greater than B For example Med(5,6,7,8,9) > Med(1,2,3,4,5,6,7,8,9)

Question to answer: is the median of Set B greater than the median of Set A?

(1) The mean of Set A is greater than the median of Set B. This doesn't tell me much. For example Mean(5,6,1000) > Med (7,8,9)

(2) The median of Set A is greater than the median of Set C. Now this is something. Lets take two lists. Med(B)=Med(7,8,9,10,11) =9 Med (C) = Med(1,2,3,4,5,6,7) = 4 Now if we combine the two into set A, we should expect Med(C)<Med(A)<Med(B) In our example, 6

Now lets change the balance between B and C Med (B) = Med(7,8,9,10,11) =9 Med(C) = Med(12,13,14,15,16) = 14 Med (A) = Med(B,C) = 11.5 In other words, Med(B)<Med(A)<Med(C)

If we are told that Med(C) < Med(A), then Med(A) must be less than Med(B) Sufficient.

If Med(A) > Med(B), it tells me that the quantities in A are typically greater than B For example Med(5,6,7,8,9) > Med(1,2,3,4,5,6,7,8,9)

Question to answer: is the median of Set B greater than the median of Set A?

(1) The mean of Set A is greater than the median of Set B. This doesn't tell me much. For example Mean(5,6,1000) > Med (7,8,9)

(2) The median of Set A is greater than the median of Set C. Now this is something. Lets take two lists. Med(B)=Med(7,8,9,10,11) =9 Med (C) = Med(1,2,3,4,5,6,7) = 4 Now if we combine the two into set A, we should expect Med(C)<Med(A)<Med(B) In our example, 6

Now lets change the balance between B and C Med (B) = Med(7,8,9,10,11) =9 Med(C) = Med(12,13,14,15,16) = 14 Med (A) = Med(B,C) = 11.5 In other words, Med(B)<Med(A)<Med(C)

If we are told that Med(C) < Med(A), then Med(A) must be less than Med(B) Sufficient.

I choose, B

Notice that the correct answer is E, not B.
_________________

Re: Set A, Set B, and Set C each contain only positive integers. [#permalink]

Show Tags

19 Oct 2013, 05:07

1

This post received KUDOS

portland wrote:

If Med(A) > Med(B), it tells me that the quantities in A are typically greater than B For example Med(5,6,7,8,9) > Med(1,2,3,4,5,6,7,8,9)

Question to answer: is the median of Set B greater than the median of Set A?

(1) The mean of Set A is greater than the median of Set B. This doesn't tell me much. For example Mean(5,6,1000) > Med (7,8,9)

(2) The median of Set A is greater than the median of Set C. Now this is something. Lets take two lists. Med(B)=Med(7,8,9,10,11) =9 Med (C) = Med(1,2,3,4,5,6,7) = 4 Now if we combine the two into set A, we should expect Med(C)<Med(A)<Med(B) In our example, 6

Now lets change the balance between B and C Med (B) = Med(7,8,9,10,11) =9 Med(C) = Med(12,13,14,15,16) = 14 Med (A) = Med(B,C) = 11.5 In other words, Med(B)<Med(A)<Med(C)

If we are told that Med(C) < Med(A), then Med(A) must be less than Med(B) Sufficient.

I choose, B

I think the condition you mentioned that I have highlighted above doesn't satisfy the condition Median A > Median C

Consider these scenarios,

1) Set B = {3,3,3,3,3} Median of B = 3 Set C = {1,2,3} Median of C = 2 Set A = {1,2,3,3,3,3,3,3} Median of Set A = 3

Satisfies condition specified in Statement 2 i.e. Median of Set A > Median of Set C

But Median of Set B = Median of Set A

2) Set B = {3,4,5,6,7} Median of B = 5 Set C = {1,2,3} Median of C = 2 Set A = {1,2,3,3,4,5,6,7} Median of Set A = 3.5

Satisfies condition specified in Statement 2 i.e. Median of Set A > Median of Set C

Re: Set A, Set B, and Set C each contain only positive integers. [#permalink]

Show Tags

16 Apr 2014, 06:06

I would prefer algebra here.. Take two sets.. X1, X2, X3 - B Y1, Y2, Y3 -C

With the possibility for Set C integers being the greater ones or Set B..There are other but..considering these 2 and the equations formed..It is enough to select an E with a cent percent surity

Re: Set A, Set B, and Set C each contain only positive integers. [#permalink]

Show Tags

07 Sep 2015, 02:23

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: Set A, Set B, and Set C each contain only positive integers. [#permalink]

Show Tags

28 Sep 2016, 04:27

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: Set A, Set B, and Set C each contain only positive integers. [#permalink]

Show Tags

15 Mar 2017, 23:59

mm007 wrote:

Set A, Set B, and Set C each contain only positive integers. If Set A is composed entirely of all the members of Set B plus all the members of Set C, is the median of Set B greater than the median of Set A?

(1) The mean of Set A is greater than the median of Set B. (2) The median of Set A is greater than the median of Set C.

OFFICIAL SOLUTION

From the question stem, we know that Set A is composed entirely of all the members of Set B plus all the members of Set C.

The question asks us to compare the median of Set A (the combined set) and the median of Set B (one of the smaller sets).

Statement (1) tells us that the mean of Set A is greater than the median of Set B. This gives us no useful information to compare the medians of the two sets. To see this, consider the following:

Set B: { 1, 1, 2 } Set C: { 4, 7 } Set A: { 1, 1, 2, 4, 7 }

In the example above, the mean of Set A (3) is greater than the median of Set B (1) and the median of Set A (2) is GREATER than the median of Set B (1).

However, consider the following example:

Set B: { 4, 5, 6 } Set C: { 1, 2, 3, 21 } Set A: { 1, 2, 3, 4, 5, 6, 21 }

Here the mean of Set A (6) is greater than the median of Set B (5) and the median of Set A (4) is LESS than the median of Set B (5).

This demonstrates that Statement (1) alone does is not sufficient to answer the question.

Let's consider Statement (2) alone: The median of Set A is greater than the median of Set C.

By definition, the median of the combined set (A) must be any value at or between the medians of the two smaller sets (B and C).

Test this out and you'll see that it is always true. Thus, before considering Statement (2), we have three possibilities

Possibility 1: The median of Set A is greater than the median of Set B but less than the median of Set C.

Possibility 2: The median of Set A is greater than the median of Set C but less than the median of Set B.

Possibility 3: The median of Set A is equal to the median of Set B or the median of Set C.

Statement (2) tells us that the median of Set A is greater than the median of Set C. This eliminates Possibility 1, but we are still left with Possibility 2 and Possibility 3. The median of Set B may be greater than OR equal to the median of Set A.

Thus, using Statement (2) we cannot determine whether the median of Set B is greater than the median of Set A.

Combining Statements (1) and (2) still does not yield an answer to the question, since Statement (1) gives no relevant information that compares the two medians and Statement (2) leaves open more than one possibility.

Therefore, the correct answer is Choice (E): Statements (1) and (2) TOGETHER are NOT sufficient.
_________________

"Be challenged at EVERY MOMENT."

“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”

"Each stage of the journey is crucial to attaining new heights of knowledge."

Set A, Set B, and Set C each contain only positive integers. [#permalink]

Show Tags

23 Sep 2017, 02:06

Hi Bunuel,

Yes answer should be E.

First chose B, by misreading the question as Median of B > Median of C ? instead of Median of B > Median of A?

So if the question had been median of B > median of C?

Statement1: Mean of Set A > Median of Set B, considering examples: 1. set B: {4,5,6}, set C:{1,2,2000} => mean of A > median of B, also median of B > median of C 2. set B: {1,2,6}, set C:{4,5,2000} => mean of A > median of B, also now median of B < median of C

So insuff

Statement 2: Median of A > Median of C.

This means that Set B has more elements whose values are greater than median of C than elements whose values is less than median of C. So this implies that, Set B must have the middle element(i.e. median of B) definitely above median of C. So this statement is sufficent

We’ve given one of our favorite features a boost! You can now manage your profile photo, or avatar , right on WordPress.com. This avatar, powered by a service...

Sometimes it’s the extra touches that make all the difference; on your website, that’s the photos and video that give your content life. You asked for streamlined access...

A lot has been written recently about the big five technology giants (Microsoft, Google, Amazon, Apple, and Facebook) that dominate the technology sector. There are fears about the...

Post today is short and sweet for my MBA batchmates! We survived Foundations term, and tomorrow's the start of our Term 1! I'm sharing my pre-MBA notes...