Last visit was: 18 Nov 2025, 19:24 It is currently 18 Nov 2025, 19:24
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
BANON
Joined: 20 Feb 2012
Last visit: 07 Aug 2014
Posts: 25
Own Kudos:
2,947
 [106]
Given Kudos: 6
Posts: 25
Kudos: 2,947
 [106]
9
Kudos
Add Kudos
97
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,082
 [62]
31
Kudos
Add Kudos
31
Bookmarks
Bookmark this Post
User avatar
MacFauz
Joined: 02 Jul 2012
Last visit: 19 Mar 2022
Posts: 996
Own Kudos:
3,359
 [46]
Given Kudos: 116
Location: India
Concentration: Strategy
GMAT 1: 740 Q49 V42
GPA: 3.8
WE:Engineering (Energy)
42
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
General Discussion
avatar
Desperate123
Joined: 25 Mar 2012
Last visit: 08 Apr 2013
Posts: 17
Own Kudos:
Given Kudos: 26
Posts: 17
Kudos: 24
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Bunuel ,

According to me C will not give the answer because , When i plug in the values say

g=15 and h = 10
r= 2 and s = 3

the max value for A is 15 and the minimum value will be 1 (since the range is 2)
The max value for B is 10 and the minimum value will be 1 (since the range is 3)

the min value for both is 1 .. (we will not be able to ans question "Is the least height of the students in class A is greater than the least height of the students in class B"

Here , A=B

In one more instance ,

g=10 and h =9
r=4 and s=5

the min value for A will be 2
the min value for B will be 4

Here,

A < B

One more instance

g=12 and h =10
r=7 and s=8

the min value for A is 5
the min value for B is 2

here A > B

I was getting 3 different values.
So i marked E as my option. Can you please tell me what i am missing here.
avatar
heygmat
Joined: 26 May 2012
Last visit: 13 Dec 2012
Posts: 16
Own Kudos:
23
 [4]
Given Kudos: 10
Posts: 16
Kudos: 23
 [4]
2
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
BANON
For the students in class A, the range of their heights is r centimeters and the greatest height is g centimeters. For the students in class B, the range of their heights is s centimeters and the greatest height is h centimeters. Is the least height of the students in class A greater than the least height of the students in class B ?

(1) r < s
(2) g > h


QUESTION A>B?........Where A is the smallest hight of class A and B is the smallest hight of class B


we can simply form an equation from this problem
from the question stem we can draw this as per my undestanding G-A=R, H-B=S, G for greatest hight and A for smallest in class A, R for range, H for greatest in B CLASS, B for smallest hight in B class, S for range in B CLASS
from stmnet 1. we can get R-S<0 AND FROM stmnt 2. we can get G-H>0

SO WE have four equations
1.G-A=R
2.H-B=S or H= B+S
3.R-S<0
4.G-H>0
NOW action

Eq.3.------R-S<0 OR G-A-S<0( putting value of R.) or -A<S-G OR A>G-S
Eq 4......... G-H>0 OR G-B-S>0 (putting value of H.) OR -B>S-G OR B<G-S
FROM this two we can easily form this
B<G-S<A..................WHERE ALL OF THE ACRONYMES ARE POSITIVE NOT NEGATIVE SO B MUST BE LESS THAN A

THAT directs us to combine these two statements for the solution

hence C
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
778,082
 [4]
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,082
 [4]
3
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Desperate123
Hi Bunuel ,

According to me C will not give the answer because , When i plug in the values say

g=15 and h = 10
r= 2 and s = 3

the max value for A is 15 and the minimum value will be 1 (since the range is 2)
The max value for B is 10 and the minimum value will be 1 (since the range is 3)


the min value for both is 1 .. (we will not be able to ans question "Is the least height of the students in class A is greater than the least height of the students in class B"

Here , A=B

In one more instance ,

g=10 and h =9
r=4 and s=5

the min value for A will be 2
the min value for B will be 4


Here,

A < B

One more instance

g=12 and h =10
r=7 and s=8

the min value for A is 5
the min value for B is 2

here A > B

I was getting 3 different values.
So i marked E as my option. Can you please tell me what i am missing here.

The red parts above are not correct. How did you get those values there? Anyway:

The range of a set is the difference between the largest and smallest elements in the set.

Which means that if: g=15, h = 10, r= 2 and s = 3, then:

For A: {Largest}-{Smallest}={Range} --> 15-{Smallest}=2 --> {Smallest}=13, not 1 as you've written.
For B: {Largest}-{Smallest}={Range} --> 10-{Smallest}=3 --> {Smallest}=7, not 1 as you've written.

13>7.

The same for the second example in your post.

Hope it's clear.
User avatar
Marcab
Joined: 03 Feb 2011
Last visit: 22 Jan 2021
Posts: 850
Own Kudos:
4,852
 [11]
Given Kudos: 221
Status:Retaking after 7 years
Location: United States (NY)
Concentration: Finance, Economics
GMAT 1: 720 Q49 V39
GPA: 3.75
GMAT 1: 720 Q49 V39
Posts: 850
Kudos: 4,852
 [11]
11
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Class A:
Smallest height=g-r
Range of heights=r
Greatest height=g
Class B:
Smallest height=h-s
Range=s
Greatest height=h

Question is asking whether g-r>h-s? or whether g+s>h+r?
Statement 1: S>r Not sufficient. Since we don't know about g & h.
Statement 2: g>h Not sufficient. Since we don't know about s & r.
On adding the two inequalities,
We get: g+s>h+r. Hence sufficient.

Please note that we can add or multiply the inequalities but we can't divide or subtract.
Hope that helps.
-s
User avatar
sukanyar
Joined: 20 Apr 2013
Last visit: 20 Dec 2017
Posts: 113
Own Kudos:
126
 [11]
Given Kudos: 19
Posts: 113
Kudos: 126
 [11]
8
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
Assume smallest in class A as a
=> g - a = r
=> a = g - r

Assume smallest in class B as b
=> h - a = s
=> a = h - s

Question is whether g - r > h - s

(1) just says that r < s
Since we don't know anything about g and h, this is insufficient.

(2) says that g > h
Since we don't know anything about r and s, this is insufficient.

Combining,

s > r
g > h

Reversing the inequality r < s to s > r, so that now we have both inequalities pointing in the same direction.

Once that's the case, we can simply add the two inequalities

=> s + g > r + h
=> g - r > h - s

Hence, sufficient.

So, C.
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
35,331
 [9]
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,331
 [9]
4
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
j_shreyans
For the students in class A, the range of their height is r cm and the greatest heights is g cm. For the students in class B , the range of their heights is s cm and the greatest heights is h cm. Is the least height of the students in class A greater than the least height of the students in class B?
Statement 1) r < s
Statement 2) g > h

Given: For the students in class A , the range of their heights is r cms and the greatest height is g cms.
Range = greatest height - least height.
Rearrange this to get: least height = greatest height - range.
So, for class A, the least height = g - r

Given: For the students in class B, the range of their heights is s cms and the greatest height is h cms.
So, for class B, the least height = h - s

Target question: Is the least height of the students class A greater than the least height of the students in class B?

We can rephrase this as...
REPHRASED target question: Is h - s < g - r

Since it's often easier to deal with sums than with differences, let's rephrase the target question one more time by taking h - s < g - r and adding s and r to both sides to get...
RE-REPHRASED target question: Is h + r < g + s

Perfect!! Now that we've rephrased the target question, this question is relatively easy to solve.

Aside: We have a free video with tips on rephrasing the target question: https://www.gmatprepnow.com/module/gmat-data-sufficiency?id=1100

Statement 1: r < s
Since we have no information about h and g, we cannot answer the RE-REPHRASED target question with certainty.
So, statement 1 is NOT SUFFICIENT

Statement 2: g > h
Since we have no information about r and s, we cannot answer the RE-REPHRASED target question with certainty.
So, statement 2 is NOT SUFFICIENT

Statements 1 and 2 combined
IMPORTANT: If we have two inequalities with the inequality symbols FACING THE SAME DIRECTION, we can add them.

Statement 1: r < s
Statement 2: h < g [I rewrote the inequality so that it's facing the same direction as that in statement 1]
ADD the inequalities to get: h + r < g + s
Perfect!! Since we can answer the RE-REPHRASED target question with certainty, the combined statements are SUFFICIENT

Answer = C

Cheers,
Brent
User avatar
GMATinsight
User avatar
Major Poster
Joined: 08 Jul 2010
Last visit: 18 Nov 2025
Posts: 6,835
Own Kudos:
Given Kudos: 128
Status:GMAT/GRE Tutor l Admission Consultant l On-Demand Course creator
Location: India
GMAT: QUANT+DI EXPERT
Schools: IIM (A) ISB '24
GMAT 1: 750 Q51 V41
WE:Education (Education)
Products:
Expert
Expert reply
Schools: IIM (A) ISB '24
GMAT 1: 750 Q51 V41
Posts: 6,835
Kudos: 16,349
Kudos
Add Kudos
Bookmarks
Bookmark this Post
BANON
For the students in class A, the range of their heights is r centimeters and the greatest height is g centimeters. For the students in class B, the range of their heights is s centimeters and the greatest height is h centimeters. Is the least height of the students in class A greater than the least height of the students in class B ?

(1) r < s
(2) g > h

Answer: Option C

Check solution
Attachments

File comment: www.GMATinsight.com
14.jpg
14.jpg [ 127.4 KiB | Viewed 38425 times ]

User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 18 Nov 2025
Posts: 21,712
Own Kudos:
26,990
 [1]
Given Kudos: 300
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,712
Kudos: 26,990
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
BANON
For the students in class A, the range of their heights is r centimeters and the greatest height is g centimeters. For the students in class B, the range of their heights is s centimeters and the greatest height is h centimeters. Is the least height of the students in class A greater than the least height of the students in class B ?

(1) r < s
(2) g > h

We are given that for the students in class A, the tallest student is g cm and the range in heights is r cm. If we let a = the height of the shortest student in class A, we can create the following equation:

g - r = a

We are also given that for the students in class B, the tallest student is h cm and the range in heights is s cm. If we let b = the height of the shortest student in class B, we can create the following equation:

h - s = b

We need to determine whether the height of the shortest student in class A is greater than that of the shortest student in class B.

That is, we need to determine whether a > b or whether g - r > h - s.

Statement One Alone:

r < s

Since we don’t know anything about g and h, we cannot determine whether g – r > h – s.

Statement Two Alone:

g > h

Since we don’t know anything about r and s, we can’t determine whether g – r > h – s.

Statements One and Two Together:

From the two statements, we know r < s and g > h. We can multiply both sides of r < s by -1 (don’t forget to reverse the inequality sign) to get -r > -s.

Adding the two inequalities gives us:

(g > h)
+ (-r > -s)

g - r > h - s

Since we have determined that g - r is GREATER than h - s, we have answered the question.

Answer: C
avatar
shoum27
Joined: 04 Dec 2016
Last visit: 11 Jun 2019
Posts: 22
Own Kudos:
Given Kudos: 37
Location: India
GMAT 1: 710 Q50 V35
GPA: 4
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
BANON
For the students in class A, the range of their heights is r centimeters and the greatest height is g centimeters. For the students in class B, the range of their heights is s centimeters and the greatest height is h centimeters. Is the least height of the students in class A greater than the least height of the students in class B ?

(1) r < s
(2) g > h

Each statement alone is clearly insufficient. Now, when taken together the question becomes easier if you just visualize it. Given: G>H and R<S:

------------(MIN)----G, red is the range of A, r;
(MIN)------------H, blue is the range of B, s.

You can literally see that the least height of the students in class A is greater than the least height of the students in class B.

Answer: C.

Hope it's clear.


Hi

can we Subtract the two inequalities given in the statements
1. r<s
2. g>h

1+2 combined : Subtracting 1 from 2 : g-r>h-s ...means Min of A > Min of B ...so C

is my steps correct?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
778,082
 [1]
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,082
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
shoumodip
Bunuel
BANON
For the students in class A, the range of their heights is r centimeters and the greatest height is g centimeters. For the students in class B, the range of their heights is s centimeters and the greatest height is h centimeters. Is the least height of the students in class A greater than the least height of the students in class B ?

(1) r < s
(2) g > h

Each statement alone is clearly insufficient. Now, when taken together the question becomes easier if you just visualize it. Given: G>H and R<S:

------------(MIN)----G, red is the range of A, r;
(MIN)------------H, blue is the range of B, s.

You can literally see that the least height of the students in class A is greater than the least height of the students in class B.

Answer: C.

Hope it's clear.


Hi

can we Subtract the two inequalities given in the statements
1. r<s
2. g>h

1+2 combined : Subtracting 1 from 2 : g-r>h-s ...means Min of A > Min of B ...so C

is my steps correct?

ADDING/SUBTRACTING INEQUALITIES

1. You can only add inequalities when their signs are in the same direction:

If \(a>b\) and \(c>d\) (signs in same direction: \(>\) and \(>\)) --> \(a+c>b+d\).
Example: \(3<4\) and \(2<5\) --> \(3+2<4+5\).

2. You can only apply subtraction when their signs are in the opposite directions:

If \(a>b\) and \(c<d\) (signs in opposite direction: \(>\) and \(<\)) --> \(a-c>b-d\) (take the sign of the inequality you subtract from).
Example: \(3<4\) and \(5>1\) --> \(3-5<4-1\).

Check for more the links below:
Inequalities Made Easy!
User avatar
RashedVai
Joined: 24 Feb 2017
Last visit: 03 Apr 2025
Posts: 173
Own Kudos:
Given Kudos: 114
Status:wake up with a purpose
Location: Bangladesh
Concentration: Accounting, Entrepreneurship
Kudos
Add Kudos
Bookmarks
Bookmark this Post
remember that
range = greatest - least

which can be arranged to
greatest = least + range
or
least = greatest - range

--

(1)
these data concern ranges only; there is no indication whatsoever of how the heights compare.
insufficient

(2)
the greatest height in class a is taller than its counterpart in class b, but we know nothing about the ranges; if class a has a wider spread, its least height could well be shorter than that of class b.
insufficient

(together)
greatest height in class a = g - r
greatest height in class b = h - s
the given inequalities imply that g - r > h - s
sufficient

--

alternatively, you could have formulated g - r and h - s at the beginning of the problem (i.e., before considering statements (1) and (2) alone); these formulations make it perhaps even easier to see that (1) and (2) individually are insufficient.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,589
Own Kudos:
Posts: 38,589
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105355 posts
496 posts