Author 
Message 
TAGS:

Hide Tags

CEO
Joined: 12 Sep 2015
Posts: 2865
Location: Canada

If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +
[#permalink]
Show Tags
08 May 2017, 07:06
Question Stats:
42% (02:04) correct 58% (01:44) wrong based on 233 sessions
HideShow timer Statistics
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then \(1^2  2^2 + 3^2  4^2 + 5^2  6^2 + . . . . . + 97^2  98^2 + 99^2  100^2 =\) A) J²  K² B) 50(J²  K²) C) K  J D) K²  J² E) (J  K)² *kudos for all correct solutions
Official Answer and Stats are available only to registered users. Register/ Login.
_________________
Brent Hanneson – GMATPrepNow.com
Sign up for our free Question of the Day emails




CEO
Joined: 12 Sep 2015
Posts: 2865
Location: Canada

Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +
[#permalink]
Show Tags
10 May 2017, 14:07
GMATPrepNow wrote: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then \(1^2  2^2 + 3^2  4^2 + 5^2  6^2 + . . . . . + 97^2  98^2 + 99^2  100^2 =\)
A) J²  K² B) 50(J²  K²) C) K  J D) K²  J² E) (J  K)²
We have several differences of squares hiding in the expression 1²  2² + 3²  4² + 5²  6² + . . . . . + 97²  98² + 99²  100² 1²  2² + 3²  4² + 5²  6² + . . . . . + 97²  98² + 99²  100² = 1²  2² + 3²  4² + 5²  6² + . . . . . + 97²  98² + 99²  100² = (1  2)(1 + 2) + (3  4)(3 + 4) + (5  6)(5 + 6) + . . . . . + (97  98)(97 + 98) + (99  100)(99 + 100)= (1)(1 + 2) + (1)(3 + 4) + (1)(5 + 6) + . . . . . + (1)(97 + 98) + (1)(99 + 100)= (1)[ (1 + 2) + (3 + 4) + (5 + 6) + . . . . . + (97 + 98) + (99 + 100)] = (1)( 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100) IMPORTANT: within the sum, 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100, we have all of the ODD integers from 1 to 99 inclusive, and we have all of the EVEN integers from 2 to 100 inclusive. So, we can say that 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100 = K + J So, we're replace 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100 with K + J. We get: (1)( 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100) = (1)(K + J) = K  J Answer: Cheers, Brent
_________________
Brent Hanneson – GMATPrepNow.com
Sign up for our free Question of the Day emails




Director
Joined: 05 Mar 2015
Posts: 984

If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +
[#permalink]
Show Tags
08 May 2017, 07:53
GMATPrepNow wrote: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then \(1^2  2^2 + 3^2  4^2 + 5^2  6^2 + . . . . . + 97^2  98^2 + 99^2  100^2 =\)
A) J²  K² B) 50(J²  K²) C) K  J D) K²  J² E) (J  K)²
*kudos for all correct solutions simply put j= 2+4 k= 1+3 then 1^2 2^2 + 3^2  4^2 = 14+916= 10 also j= 2+4= 6 && k = 1+3 =4 j^2= 36 && k^2 =16 just plug in values to option to get 10 as our answer only option C does Ans C




Math Expert
Joined: 02 Aug 2009
Posts: 6796

Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +
[#permalink]
Show Tags
08 May 2017, 08:25
GMATPrepNow wrote: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then \(1^2  2^2 + 3^2  4^2 + 5^2  6^2 + . . . . . + 97^2  98^2 + 99^2  100^2 =\)
A) J²  K² B) 50(J²  K²) C) K  J D) K²  J² E) (J  K)²
*kudos for all correct solutions Hi, \(1^2  2^2 + 3^2  4^2 + 5^2  6^2 + . . . . . + 97^2  98^2 + 99^2  100^2 =\) ..... Here take all inpairs \(1^22^2\), \(3^24^2\), and so on till \(99^2100^2\).. 1^22^2=(12)(1+2)=1(1+2)=12... 3^24^2=(34)(3+4)=1(3+4)=34.. So the equation becomes 1234......99100=(1+2+3+4+...+99+100)= [(2+4+6....+98+100)+(1+3+5+...+97+99)]=[(j)+(k)]=jk C
_________________
1) Absolute modulus : http://gmatclub.com/forum/absolutemodulusabetterunderstanding210849.html#p1622372 2)Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html 3) effects of arithmetic operations : https://gmatclub.com/forum/effectsofarithmeticoperationsonfractions269413.html
GMAT online Tutor



Director
Joined: 14 Nov 2014
Posts: 651
Location: India
GPA: 3.76

Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +
[#permalink]
Show Tags
08 May 2017, 10:52
GMATPrepNow wrote: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then \(1^2  2^2 + 3^2  4^2 + 5^2  6^2 + . . . . . + 97^2  98^2 + 99^2  100^2 =\)
A) J²  K² B) 50(J²  K²) C) K  J D) K²  J² E) (J  K)²
*kudos for all correct solutions We can break the problem into a^2  b ^2 = 1^2  2^2 = (1+2) (12) = 3 similarly other pair will give = 7 ,next pair will give = 11 final pair will give 199 Now the question stem is reduced to below seq: 3 711.....199 3 = (1+2) 7 = (3+4) 11 = (5+6) (1+3+5....)(2+4+6...) (j)(k) (j+k)..Ans



Senior SC Moderator
Joined: 14 Nov 2016
Posts: 1322
Location: Malaysia

If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +
[#permalink]
Show Tags
11 May 2017, 22:52
GMATPrepNow wrote: If \(J = 2 + 4 + 6 + 8 + . . . 98 + 100\), and \(K = 1 + 3 + 5 + 7 + . . . + 97 + 99\), then \(1^2  2^2 + 3^2  4^2 + 5^2  6^2 + . . . . . + 97^2  98^2 + 99^2  100^2 =\)
A) J²  K² B) 50(J²  K²) C) K  J D) K²  J² E) (J  K)²
*kudos for all correct solutions From Matt ( Veritas Prep) We could also cheat with a pattern: \(n²  (n + 1)² => n²  (n² + 2n + 1) => (2n + 1) => (n + n + 1)\) for any value of n. Since we've got 1²  2² + 3²  4² ..., we've really got (1 + 2) (3 + 4) .... (99 + 100), or 1 2 3 4 ....  99  100, or (1 + 2 + 3 + ... + 100), or (K + J), or K  J.
_________________
"Be challenged at EVERY MOMENT."
“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”
"Each stage of the journey is crucial to attaining new heights of knowledge."
Rules for posting in verbal forum  Please DO NOT post short answer in your post!
Advanced Search : https://gmatclub.com/forum/advancedsearch/



Director
Joined: 13 Mar 2017
Posts: 619
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE: Engineering (Energy and Utilities)

If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +
[#permalink]
Show Tags
11 May 2017, 23:28
GMATPrepNow wrote: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then \(1^2  2^2 + 3^2  4^2 + 5^2  6^2 + . . . . . + 97^2  98^2 + 99^2  100^2 =\)
A) J²  K² B) 50(J²  K²) C) K  J D) K²  J² E) (J  K)²
*kudos for all correct solutions There can be many solutions possible. But we will go with the basic solution, though it might be lengthy one to understand the concepts.. We can use tricks to solve problem as suggested by other members in exam.. Learning tricks is also very important. J = 2+4+6+8+....+98+100 K = 1+3+5+7+....++97+99 \(1^2  2^2 + 3^2  4^2 + 5^2  6^2 + . . . . . + 97^2  98^2 + 99^2  100^2 =\) = (12)(1+2) + (34) (3+4)+ (56)(5+6) +.......+ (9798)(97+98) +(99100)(99+100) = 1[(1+2)+(3+4)(5+6) +......+ (97+98)+(99+100)] = 1[ (1+3+5+...+97+99) + (2+4+6+...+98+100)] = 1(K+J) = KJ
_________________
CAT 99th percentiler : VA 97.27  DILR 96.84  QA 98.04  OA 98.95 UPSC Aspirants : Get my app UPSC Important News Reader from Play store.
MBA Social Network : WebMaggu
Appreciate by Clicking +1 Kudos ( Lets be more generous friends.) What I believe is : "Nothing is Impossible, Even Impossible says I'm Possible" : "Stay Hungry, Stay Foolish".



Intern
Joined: 28 Mar 2013
Posts: 4

Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +
[#permalink]
Show Tags
11 May 2017, 23:39
Answer is C . We can pair any 2 consecutive term and apply (a+b) (ab) in stead of a^2  b ^2. Sent from my Moto G (4) using GMAT Club Forum mobile app



Intern
Joined: 05 Mar 2018
Posts: 3

Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +
[#permalink]
Show Tags
30 Apr 2018, 21:01
GMATPrepNow wrote: GMATPrepNow wrote: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then \(1^2  2^2 + 3^2  4^2 + 5^2  6^2 + . . . . . + 97^2  98^2 + 99^2  100^2 =\)
A) J²  K² B) 50(J²  K²) C) K  J D) K²  J² E) (J  K)²
We have several differences of squares hiding in the expression 1²  2² + 3²  4² + 5²  6² + . . . . . + 97²  98² + 99²  100² 1²  2² + 3²  4² + 5²  6² + . . . . . + 97²  98² + 99²  100² = 1²  2² + 3²  4² + 5²  6² + . . . . . + 97²  98² + 99²  100² = (1  2)(1 + 2) + (3  4)(3 + 4) + (5  6)(5 + 6) + . . . . . + (97  98)(97 + 98) + (99  100)(99 + 100)= [color=red](1)(1 + 2) + (1)(3 + 4) + (1)(5 + 6) + . . . . . + (1)(97 + 98) + (1)(99 + 100)= (1)[ (1 + 2) + (3 + 4) + (5 + 6) + . . . . . + (97 + 98) + (99 + 100)] = (1)( 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100) IMPORTANT: within the sum, 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100, we have all of the ODD integers from 1 to 99 inclusive, and we have all of the EVEN integers from 2 to 100 inclusive. So, we can say that 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100 = K + J So, we're replace 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100 with K + J. We get: (1)( 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100) = (1)(K + J) = K  J Answer: Cheers, Brent Hi Brent, I did't understand the step 3. Can you please elaborate, how did you write (12)(1+2) = (1)(1 + 2) (34)(3+4) =(1)(3+4)... and so on...?



CEO
Joined: 12 Sep 2015
Posts: 2865
Location: Canada

Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +
[#permalink]
Show Tags
01 May 2018, 08:16
MayurAgrawal wrote: GMATPrepNow wrote: GMATPrepNow wrote: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then \(1^2  2^2 + 3^2  4^2 + 5^2  6^2 + . . . . . + 97^2  98^2 + 99^2  100^2 =\)
A) J²  K² B) 50(J²  K²) C) K  J D) K²  J² E) (J  K)²
We have several differences of squares hiding in the expression 1²  2² + 3²  4² + 5²  6² + . . . . . + 97²  98² + 99²  100² 1²  2² + 3²  4² + 5²  6² + . . . . . + 97²  98² + 99²  100² = 1²  2² + 3²  4² + 5²  6² + . . . . . + 97²  98² + 99²  100² = (1  2)(1 + 2) + (3  4)(3 + 4) + (5  6)(5 + 6) + . . . . . + (97  98)(97 + 98) + (99  100)(99 + 100)= (1)(1 + 2) + (1)(3 + 4) + (1)(5 + 6) + . . . . . + (1)(97 + 98) + (1)(99 + 100)= (1)[ (1 + 2) + (3 + 4) + (5 + 6) + . . . . . + (97 + 98) + (99 + 100)] = (1)( 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100) IMPORTANT: within the sum, 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100, we have all of the ODD integers from 1 to 99 inclusive, and we have all of the EVEN integers from 2 to 100 inclusive. So, we can say that 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100 = K + J So, we're replace 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100 with K + J. We get: (1)( 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100) = (1)(K + J) = K  J Answer: Cheers, Brent Hi Brent, I did't understand the step 3. Can you please elaborate, how did you write (12)(1+2) = (1)(1 + 2) (34)(3+4) =(1)(3+4)... and so on...? Sure thing. Let's take (1  2)(1 + 2) + (3  4)(3 + 4) + (5  6)(5 + 6) + . . . . . + (97  98)(97 + 98) + (99  100)(99 + 100) and break it into its individual parts: (1  2)(1 + 2) = (1)(1 + 2) because 1  2 = 1 (3  4)(3 + 4) = (1)(3 + 4) because 3  4 = 1 (5  6)(5 + 6) = (1)(5 + 6) because 5  6 = 1 . . . (97  98)(97 + 98) = (1)(97 + 98) because 97  98 = 1 (99  100)(99 + 100) = (1)(99 + 100) because 99  100 = 1 So, we get: (1)(1 + 2) + (1)(3 + 4) + (1)(5 + 6) + . . . . . + (1)(97 + 98) + (1)(99 + 100)From here, we can factor out the 1 to get: (1)[ (1 + 2) + (3 + 4) + (5 + 6) + . . . . . + (97 + 98) + (99 + 100)] Which is the same as: (1)( 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100) Does that help? Cheers, Brent
_________________
Brent Hanneson – GMATPrepNow.com
Sign up for our free Question of the Day emails



Intern
Joined: 05 Mar 2018
Posts: 3

Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +
[#permalink]
Show Tags
01 May 2018, 18:00
Quote: Quote: Hi Brent, I did't understand the step 3. Can you please elaborate, how did you write (12)(1+2) = (1)(1 + 2) (34)(3+4) =(1)(3+4)... and so on...? Sure thing. Let's take (1  2)(1 + 2) + (3  4)(3 + 4) + (5  6)(5 + 6) + . . . . . + (97  98)(97 + 98) + (99  100)(99 + 100) and break it into its individual parts: (1  2)(1 + 2) = (1)(1 + 2) because 1  2 = 1 (3  4)(3 + 4) = (1)(3 + 4) because 3  4 = 1 (5  6)(5 + 6) = (1)(5 + 6) because 5  6 = 1 . . . (97  98)(97 + 98) = (1)(97 + 98) because 97  98 = 1 (99  100)(99 + 100) = (1)(99 + 100) because 99  100 = 1 So, we get: (1)(1 + 2) + (1)(3 + 4) + (1)(5 + 6) + . . . . . + (1)(97 + 98) + (1)(99 + 100)From here, we can factor out the 1 to get: (1)[ (1 + 2) + (3 + 4) + (5 + 6) + . . . . . + (97 + 98) + (99 + 100)] Which is the same as: (1)( 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100) Does that help? Cheers, Brent Silly Me. I totally missed subtraction. Thank you very much for clearing doubt.




Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + &nbs
[#permalink]
01 May 2018, 18:00






