Last visit was: 20 Jun 2024, 23:51 It is currently 20 Jun 2024, 23:51
Toolkit
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Request Expert Reply

# If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +

SORT BY:
Tags:
Show Tags
Hide Tags
GMAT Club Legend
Joined: 12 Sep 2015
Posts: 6806
Own Kudos [?]: 30599 [71]
Given Kudos: 799
Location: Canada
Most Helpful Reply
GMAT Club Legend
Joined: 12 Sep 2015
Posts: 6806
Own Kudos [?]: 30599 [35]
Given Kudos: 799
Location: Canada
Director
Joined: 05 Mar 2015
Posts: 838
Own Kudos [?]: 870 [16]
Given Kudos: 45
General Discussion
RC & DI Moderator
Joined: 02 Aug 2009
Status:Math and DI Expert
Posts: 11411
Own Kudos [?]: 33632 [7]
Given Kudos: 317
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + [#permalink]
7
Kudos
Expert Reply
GMATPrepNow wrote:
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

*kudos for all correct solutions

Hi,

$$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$ .....
Here take all inpairs $$1^2-2^2$$, $$3^2-4^2$$, and so on till $$99^2-100^2$$..
1^2-2^2=(1-2)(1+2)=-1(1+2)=-1-2...
3^2-4^2=(3-4)(3+4)=-1(3+4)=-3-4..
So the equation becomes -1-2-3-4-......-99-100=-(1+2+3+4+...+99+100)= -[(2+4+6....+98+100)+(1+3+5+...+97+99)]=-[(j)+(k)]=-j-k
C
Current Student
Joined: 14 Nov 2014
Posts: 450
Own Kudos [?]: 363 [2]
Given Kudos: 54
Location: India
GMAT 1: 700 Q50 V34
GPA: 3.76
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + [#permalink]
2
Kudos
GMATPrepNow wrote:
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

*kudos for all correct solutions

We can break the problem into a^2 - b ^2 = 1^2 - 2^2 = (1+2) (1-2) = -3
similarly other pair will give = -7 ,next pair will give = -11
final pair will give -199
Now the question stem is reduced to below seq:
-3 -7-11.....-199

-3 = -(1+2)
-7 = -(3+4)
-11 = -(5+6)

-(1+3+5....)-(2+4+6...)
-(j)-(k)
-(j+k)..Ans
Current Student
Joined: 14 Nov 2016
Posts: 1171
Own Kudos [?]: 20895 [0]
Given Kudos: 926
Location: Malaysia
Concentration: General Management, Strategy
GMAT 1: 750 Q51 V40 (Online)
GPA: 3.53
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + [#permalink]
GMATPrepNow wrote:
If $$J = 2 + 4 + 6 + 8 + . . . 98 + 100$$, and $$K = 1 + 3 + 5 + 7 + . . . + 97 + 99$$, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

*kudos for all correct solutions

From Matt (Veritas Prep)

We could also cheat with a pattern:

$$n² - (n + 1)² => n² - (n² + 2n + 1) => -(2n + 1) => -(n + n + 1)$$ for any value of n.

Since we've got 1² - 2² + 3² - 4² ..., we've really got -(1 + 2) -(3 + 4) .... -(99 + 100), or -1 -2 -3 -4 .... - 99 - 100, or -(1 + 2 + 3 + ... + 100), or -(K + J), or -K - J.
Director
Joined: 13 Mar 2017
Affiliations: IIT Dhanbad
Posts: 624
Own Kudos [?]: 599 [1]
Given Kudos: 88
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE:Engineering (Energy and Utilities)
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + [#permalink]
1
Kudos
GMATPrepNow wrote:
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

*kudos for all correct solutions

There can be many solutions possible. But we will go with the basic solution, though it might be lengthy one to understand the concepts..
We can use tricks to solve problem as suggested by other members in exam.. Learning tricks is also very important.

J = 2+4+6+8+....+98+100
K = 1+3+5+7+....++97+99

$$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$
= (1-2)(1+2) + (3-4) (3+4)+ (5-6)(5+6) +.......+ (97-98)(97+98) +(99-100)(99+100)
= -1[(1+2)+(3+4)(5+6) +......+ (97+98)+(99+100)]
= -1[ (1+3+5+...+97+99) + (2+4+6+...+98+100)]
= -1(K+J)
= -K-J

Anwer : C
Intern
Joined: 28 Mar 2013
Posts: 11
Own Kudos [?]: 10 [1]
Given Kudos: 15
GMAT 1: 680 Q49 V32
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + [#permalink]
1
Kudos
Answer is C .
We can pair any 2 consecutive term and apply (a+b) (a-b) in stead of a^2 - b ^2.

Sent from my Moto G (4) using GMAT Club Forum mobile app
Intern
Joined: 05 Mar 2018
Posts: 3
Own Kudos [?]: 0 [0]
Given Kudos: 85
Location: India
Concentration: Entrepreneurship, Strategy
GPA: 2.7
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + [#permalink]
GMATPrepNow wrote:
GMATPrepNow wrote:
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

We have several differences of squares hiding in the expression 1² - 2² + 3² - 4² + 5² - 6² + . . . . . + 97² - 98² + 99² - 100²

1² - 2² + 3² - 4² + 5² - 6² + . . . . . + 97² - 98² + 99² - 100² = 1² - 2² + 3² - 4² + 5² - 6² + . . . . . + 97² - 98² + 99² - 100²
= (1 - 2)(1 + 2) + (3 - 4)(3 + 4) + (5 - 6)(5 + 6) + . . . . . + (97 - 98)(97 + 98) + (99 - 100)(99 + 100)
= [color=red](-1)(1 + 2) + (-1)(3 + 4) + (-1)(5 + 6) + . . . . . + (-1)(97 + 98) + (-1)(99 + 100)
= (-1)[(1 + 2) + (3 + 4) + (5 + 6) + . . . . . + (97 + 98) + (99 + 100)]
= (-1)(1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100)

IMPORTANT: within the sum, 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100, we have all of the ODD integers from 1 to 99 inclusive, and we have all of the EVEN integers from 2 to 100 inclusive.

So, we can say that 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100 = K + J

So, we're replace 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100 with K + J.
We get: (-1)(1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100) = (-1)(K + J)
= -K - J

Answer:

Cheers,
Brent

Hi Brent, I did't understand the step 3. Can you please elaborate, how did you write
(1-2)(1+2) = (-1)(1 + 2)
(3-4)(3+4) =(-1)(3+4)... and so on...?
GMAT Club Legend
Joined: 12 Sep 2015
Posts: 6806
Own Kudos [?]: 30599 [2]
Given Kudos: 799
Location: Canada
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + [#permalink]
2
Kudos
Expert Reply
Top Contributor
MayurAgrawal wrote:
GMATPrepNow wrote:
GMATPrepNow wrote:
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

We have several differences of squares hiding in the expression 1² - 2² + 3² - 4² + 5² - 6² + . . . . . + 97² - 98² + 99² - 100²

1² - 2² + 3² - 4² + 5² - 6² + . . . . . + 97² - 98² + 99² - 100² = 1² - 2² + 3² - 4² + 5² - 6² + . . . . . + 97² - 98² + 99² - 100²
= (1 - 2)(1 + 2) + (3 - 4)(3 + 4) + (5 - 6)(5 + 6) + . . . . . + (97 - 98)(97 + 98) + (99 - 100)(99 + 100)
= (-1)(1 + 2) + (-1)(3 + 4) + (-1)(5 + 6) + . . . . . + (-1)(97 + 98) + (-1)(99 + 100)
= (-1)[(1 + 2) + (3 + 4) + (5 + 6) + . . . . . + (97 + 98) + (99 + 100)]
= (-1)(1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100)

IMPORTANT: within the sum, 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100, we have all of the ODD integers from 1 to 99 inclusive, and we have all of the EVEN integers from 2 to 100 inclusive.

So, we can say that 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100 = K + J

So, we're replace 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100 with K + J.
We get: (-1)(1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100) = (-1)(K + J)
= -K - J

Answer:

Cheers,
Brent

Hi Brent, I did't understand the step 3. Can you please elaborate, how did you write
(1-2)(1+2) = (-1)(1 + 2)
(3-4)(3+4) =(-1)(3+4)... and so on...?

Sure thing.
Let's take (1 - 2)(1 + 2) + (3 - 4)(3 + 4) + (5 - 6)(5 + 6) + . . . . . + (97 - 98)(97 + 98) + (99 - 100)(99 + 100) and break it into its individual parts:
(1 - 2)(1 + 2) = (-1)(1 + 2) because 1 - 2 = -1
(3 - 4)(3 + 4) = (-1)(3 + 4) because 3 - 4 = -1
(5 - 6)(5 + 6) = (-1)(5 + 6) because 5 - 6 = -1
.
.
.

(97 - 98)(97 + 98) = (-1)(97 + 98) because 97 - 98 = -1
(99 - 100)(99 + 100) = (-1)(99 + 100) because 99 - 100 = -1

So, we get: (-1)(1 + 2) + (-1)(3 + 4) + (-1)(5 + 6) + . . . . . + (-1)(97 + 98) + (-1)(99 + 100)
From here, we can factor out the -1 to get: (-1)[(1 + 2) + (3 + 4) + (5 + 6) + . . . . . + (97 + 98) + (99 + 100)]
Which is the same as: (-1)(1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100)

Does that help?

Cheers,
Brent
Intern
Joined: 05 Mar 2018
Posts: 3
Own Kudos [?]: 0 [0]
Given Kudos: 85
Location: India
Concentration: Entrepreneurship, Strategy
GPA: 2.7
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + [#permalink]
Quote:
Quote:
Hi Brent, I did't understand the step 3. Can you please elaborate, how did you write
(1-2)(1+2) = (-1)(1 + 2)
(3-4)(3+4) =(-1)(3+4)... and so on...?

Sure thing.
Let's take (1 - 2)(1 + 2) + (3 - 4)(3 + 4) + (5 - 6)(5 + 6) + . . . . . + (97 - 98)(97 + 98) + (99 - 100)(99 + 100) and break it into its individual parts:
(1 - 2)(1 + 2) = (-1)(1 + 2) because 1 - 2 = -1
(3 - 4)(3 + 4) = (-1)(3 + 4) because 3 - 4 = -1
(5 - 6)(5 + 6) = (-1)(5 + 6) because 5 - 6 = -1
.
.
.

(97 - 98)(97 + 98) = (-1)(97 + 98) because 97 - 98 = -1
(99 - 100)(99 + 100) = (-1)(99 + 100) because 99 - 100 = -1

So, we get: (-1)(1 + 2) + (-1)(3 + 4) + (-1)(5 + 6) + . . . . . + (-1)(97 + 98) + (-1)(99 + 100)
From here, we can factor out the -1 to get: (-1)[(1 + 2) + (3 + 4) + (5 + 6) + . . . . . + (97 + 98) + (99 + 100)]
Which is the same as: (-1)(1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100)

Does that help?

Cheers,
Brent

Silly Me. I totally missed subtraction. Thank you very much for clearing doubt.
UNC Kenan Flagler Moderator
Joined: 18 Jul 2015
Posts: 237
Own Kudos [?]: 249 [1]
Given Kudos: 120
GMAT 1: 530 Q43 V20
WE:Analyst (Consumer Products)
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + [#permalink]
1
Kudos
GMATPrepNow wrote:
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

*kudos for all correct solutions

Brent's solution in this thread above is amazing and is the way to go. I am sharing here the approach for working backwards from the answer choices.

1. Take a sample from the two series (highlighted above)
$$J = 2 + 4 + 6 + 8 = 20$$
$$K = 1 + 3 + 5 + 7 = 16$$

Now, $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + 7^2 - 8^2 = -36$$

2. Plug $$J = 20$$, $$K = 16$$ in the choices to check which one yields $$-36$$
As you will realize that only C i.e. $$-K - J$$ works
$$-K - J = -20-16 = -36$$

Ans. C
Senior Manager
Joined: 02 Jan 2022
Posts: 259
Own Kudos [?]: 100 [0]
Given Kudos: 3
GMAT 1: 760 Q50 V42
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + [#permalink]
﻿The represented term is given by :
$$﻿1^2-2^2+3^2-4^2+.............99^2-100^2$$
﻿Given that J = 2+4+......................100.
﻿K = 1+3+..........................99.
﻿The term can be rewritten as :
﻿(1+2)*(1-2) + (3+4)*(3-4)+...............(99+100)*(99-100).
﻿= (-1)* ( 1+2+3+4+...................................100).
﻿= (-1)(J+K)
﻿= -J - K.
Non-Human User
Joined: 09 Sep 2013
Posts: 33635
Own Kudos [?]: 839 [0]
Given Kudos: 0
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + [#permalink]
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + [#permalink]
Moderator:
Math Expert
93896 posts