GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 22 Oct 2019, 00:30

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If x is positive, which of the following could be correct ordering of

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Veritas Prep GMAT Instructor
User avatar
V
Joined: 16 Oct 2010
Posts: 9701
Location: Pune, India
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 02 Oct 2013, 21:21
1
imhimanshu wrote:
Hello Bunuel,
Can you show us graphical approach to this question.
I was able to draw the graph for all three equations and intersection points, however, I was not able to negate the third ordering. Would you please help me out.

Thanks
imhimanshu
P.S - How can I post graphs here.


Here is the graph:
Attachment:
Ques3.jpg
Ques3.jpg [ 11.4 KiB | Viewed 8016 times ]


III. 2x < x^2 < 1/x

For 2x to be less than x^2, the graph of 2x should lie below the graph of x^2. This happens when the graph of 2x is the red line.
For x^2 to be less than 1/x at the same time, the graph of x^2 should lie below the graph of 1/x in the region of the red line. But in the region of the red line, the graph of x^2 is never below the graph of 1/x. It will never be because graph of 1/x is going down toward y = 0 while graph of x^2 is going up toward y = infinity.
Hence this inequality will not hold for any region.
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Intern
Intern
avatar
Joined: 09 Dec 2013
Posts: 31
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 22 Feb 2014, 08:48
I picked numbers: 1/2, 1, 3/2, 2, 3

However, it didn occur to me that I must look something like 0.9. Request experts to help me understand the logic behind picking such numbers. Have my actual GMAT in 10 days, any help would be immensely valuable!

Thanks!
Veritas Prep GMAT Instructor
User avatar
V
Joined: 16 Oct 2010
Posts: 9701
Location: Pune, India
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 24 Feb 2014, 02:12
1
1
abdb wrote:
I picked numbers: 1/2, 1, 3/2, 2, 3

However, it didn occur to me that I must look something like 0.9. Request experts to help me understand the logic behind picking such numbers. Have my actual GMAT in 10 days, any help would be immensely valuable!

Thanks!


I have answered your query using this very question here: http://www.veritasprep.com/blog/2013/05 ... on-points/
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Senior Manager
Senior Manager
User avatar
B
Joined: 10 Mar 2013
Posts: 465
Location: Germany
Concentration: Finance, Entrepreneurship
Schools: WHU MBA"20 (A)
GMAT 1: 580 Q46 V24
GPA: 3.88
WE: Information Technology (Consulting)
GMAT ToolKit User
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 29 Dec 2015, 16:01
Vavali wrote:
If x is positive, which of the following could be correct ordering of \(\frac{1}{x}\), \(2x\), and \(x^2\)?

(I) \(x^2 < 2x < \frac{1}{x}\)
(II) \(x^2 < \frac{1}{x} < 2x\)
(III) \(2x < x^2 < \frac{1}{x}\)

(a) none
(b) I only
(c) III only
(d) I and II
(e) I, II and III


first, let's get rid of at least one x in the given expressions, as x is positive just multiply the expressions by x and we'll get
(I) \(x^3 < 2x^2 < 1\)
as \(2x^2\) < 1 we must pick a value which is < 1, let's pick 1/2 and it works. COULD BE

(II) \(x^3 < 1< 2x^2\)
Here we can see that \(x^3\)<1 so we must pick a value <1 BUT which will make \(2x^2\) >1 if possible. Let's pick 0.9 and it works also here. COULD BE

(III) \(2x^2 < x^3 < 1\)
We must pick a value < 1 BUT as we've already seen, if we pick a fraction < 1 we cannot make \(2x^2 < x^3\), in the above cases it \(2x^2 was > x^3\) each time we picked a fraction < 1

Hope it helps.
_________________
When you’re up, your friends know who you are. When you’re down, you know who your friends are.

Share some Kudos, if my posts help you. Thank you !

800Score ONLY QUANT CAT1 51, CAT2 50, CAT3 50
GMAT PREP 670
MGMAT CAT 630
KAPLAN CAT 660
Senior Manager
Senior Manager
User avatar
P
Joined: 24 Jun 2012
Posts: 363
Location: Pakistan
Concentration: Strategy, International Business
GPA: 3.76
GMAT ToolKit User Reviews Badge
Re: If x is positive, which of the following could be the correct ordering  [#permalink]

Show Tags

New post 14 Aug 2016, 09:36
if i take value 9/10 it satisfies 2nd ordering but if i take 2/3 it doesnt satisfies 2nd ordering. why?
_________________
Push yourself again and again. Don't give an inch until the final buzzer sounds. -Larry Bird
Success isn't something that just happens - success is learned, success is practiced and then it is shared. -Sparky Anderson
-S
Veritas Prep GMAT Instructor
User avatar
V
Joined: 16 Oct 2010
Posts: 9701
Location: Pune, India
Re: If x is positive, which of the following could be the correct ordering  [#permalink]

Show Tags

New post 16 Aug 2016, 02:27
sananoor wrote:
if i take value 9/10 it satisfies 2nd ordering but if i take 2/3 it doesnt satisfies 2nd ordering. why?


The question says "...could be the correct ordering of..."
So if even 1 positive value of x satisfies the ordering, it is included. Since 9/10 satisfies the second ordering, it is included in the ordering.

A transition point here is 1/sqrt(2). That is why values less than 1/sqrt(2) (such as 2/3) behave differently from values more than 1/sqrt(2) (such as 9/10).

Check here: http://www.veritasprep.com/blog/2013/05 ... on-points/
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Intern
Intern
avatar
Joined: 30 Jun 2016
Posts: 10
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 12 Oct 2016, 10:06
Bunuel wrote:
ykaiim wrote:
IMO B.
for 0<x<1, only statement I holds.
Brunuel, if u put x=1/2:
II. II. x^2<1/x<2x >>>>> will not hold true.
x^2 = 1/4, 1/x=2 and 2x=1 then this expression will not hold.
1/4<2<1 [Incorrect]

If x=1/9 then:
x^2=1/81, 1/x=9 and 2x=2/9
1/81<9<2/9 [Incorrect]

Let's check the III option for above values:
III. 2x<x^2<1/x
For x=1/2: 1<1/4<2 [Incorrect]
For x=1/9: 2/9<1/81<9 [Incorrect]

So, B should be the correct answer. Please check.


OA IS D.

Algebraic approach is given in my solution. Here is number picking:

I. \(x^2<2x<\frac{1}{x}\) --> \(x=\frac{1}{2}\) --> \(x^2=\frac{1}{4}\), \(2x=1\), \(\frac{1}{x}=2\) --> \(\frac{1}{4}<1<2\). Hence this COULD be the correct ordering.

II. \(x^2<\frac{1}{x}<2x\) --> \(x=0.9\) --> \(x^2=0.81\), \(\frac{1}{x}=1.11\), \(2x=1.8\) --> \(0.81<1.11<1.8\). Hence this COULD be the correct ordering.

III. \(2x<x^2<\frac{1}{x}\) --> \(x^2\) to be more than \(2x\), \(x\) must be more than 2 (for positive \(x-es\)). But if \(x>2\), then \(\frac{1}{x}\) is the least value from these three and can not be more than \(2x\) and \(x^2\). So III can not be true.

Thus I and II could be correct ordering and III can not.

Answer: D.




how did u choose the numbers for plugging in. i guess thats the trick in inequalities
Veritas Prep GMAT Instructor
User avatar
V
Joined: 16 Oct 2010
Posts: 9701
Location: Pune, India
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 14 Oct 2016, 02:11
vsvikas wrote:
how did u choose the numbers for plugging in. i guess thats the trick in inequalities


Use transition points.
Discussed here: https://www.veritasprep.com/blog/2013/0 ... on-points/
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2815
Re: If x is positive, which of the following could be the correct ordering  [#permalink]

Show Tags

New post 21 Feb 2018, 14:16
1
butterfly wrote:
If x is positive, which of the following could be the correct ordering of 1/x, 2x and x^2 ?


I. \(x^2 < 2x < \frac{1}{x}\)

II. \(x^2 < \frac{1}{x} < 2x\)

III. \(2x < x^2 < \frac{1}{x}\)


(A) None
(B) I only
(C) III only
(D) I and II only
(E) I II and III


If 0 < x < 1, for example, x = 1/2, then 1/x = 2, 2x = 1 and x^2 = 1/4. We see that x^2 < 2x < 1/x. Roman numeral I could be true. Also, if x = 3/4; then 1/x = 4/3, 2x = 3/2 and x^2 = 9/16. We see that x^2 < 1/x < 2x. Roman numeral II could also be true.

For Roman numeral III, observe that x^2 > 2x is equivalent to x^2 - 2x > 0 and we can factor out the x to obtain x(x - 2) > 0. Since x is positive, we can divide each side by x and we will get x - 2 > 0; in other words, x > 2.

On the other hand, if 1/x > 2x, then 1/x - 2x > 0; or, equivalently, (1 - 2x^2)/x > 0. Since x is positive, we can multiply each side by x to obtain 1 - 2x^2 > 0, which is equivalent to 2x^2 < 1. Then, x^2 < 1/2 and we know that this is only possible when x < 1.

Thus, the inequalities x^2 > 2x and 1/x > 2x cannot hold simultaneously for a positive x. Therefore, Roman numeral III is not possible.

In conclusion, I and II could be true.

Answer: D
_________________

Jeffrey Miller

Head of GMAT Instruction

Jeff@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Senior Manager
Senior Manager
User avatar
P
Status: Whatever it takes!
Joined: 10 Oct 2018
Posts: 383
GPA: 4
If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 14 Oct 2018, 05:42
Can't any one or two numbers(that are same) be used in all the three statements? The problem is plugging number in statement II is not satisfying. Pls explain by putting in same numbers in all statements. (I got that Statment 3 is not satisfying)

Posted from my mobile device
_________________
Kudos OK Please!!

ALL ABOUT GMAT- \(https://exampal.com/gmat/blog/gmat-score-explained\)
Veritas Prep GMAT Instructor
User avatar
V
Joined: 16 Oct 2010
Posts: 9701
Location: Pune, India
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 15 Oct 2018, 03:32
topper97 wrote:
Can't any one or two numbers(that are same) be used in all the three statements? The problem is plugging number in statement II is not satisfying. Pls explain by putting in same numbers in all statements. (I got that Statment 3 is not satisfying)

Posted from my mobile device


You cannot plug in same numbers in each statement and expect to get the answer. The requirement of each statement is different. Hence, we need to find transition points to ensure that we get the answer. This is explained in the link given here: https://gmatclub.com/forum/if-x-is-posi ... l#p1748102
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Senior Manager
Senior Manager
avatar
G
Joined: 10 Jan 2013
Posts: 303
Location: India
Concentration: General Management, Strategy
GPA: 3.95
GMAT ToolKit User Premium Member Reviews Badge
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 15 Nov 2018, 21:46
Hi Bunuel, bb
how can I find more practice questions which are of this type?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58408
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 15 Nov 2018, 23:24
1
saurabh9gupta wrote:
Hi Bunuel, bb
how can I find more practice questions which are of this type?


Use our search page: https://gmatclub.com/forum/search.php?view=search_tags

9. Inequalities



11. Must or Could be True Questions


[list][*]Theory
3 FORMATS FOR GMAT INEQUALITIES QUESTIONS YOU NEED TO KNOW
HOW TO QUICKLY INTERPRET RANGES OF VARIABLES IN GMAT QUESTIONS
[list][*]Questions
PS Questions
Trickiest Inequality Questions Type: Confusing Ranges

For more check:
ALL YOU NEED FOR QUANT.
Ultimate GMAT Quantitative Megathread
_________________
Director
Director
User avatar
D
Joined: 24 Oct 2016
Posts: 535
GMAT 1: 670 Q46 V36
GMAT 2: 690 Q47 V38
If x is positive, which of the following could be the correct ordering  [#permalink]

Show Tags

New post 15 May 2019, 07:47
butterfly wrote:
If x is positive, which of the following could be the correct ordering of 1/x, 2x and x^2 ?


I. \(x^2 < 2x < \frac{1}{x}\)

II. \(x^2 < \frac{1}{x} < 2x\)

III. \(2x < x^2 < \frac{1}{x}\)


(A) None
(B) I only
(C) III only
(D) I and II only
(E) I II and III



Method: Plug Using Transition Points



x = +
Identify Transition Points:

1/x = 2x => 1 = 2x^2 => x = 1/sqrt(2)
2x = x^2 => x^2 - 2x = 0 => x(x-2) = 0 => x = 0 or 2 (0 is not possible since x = +)
x^2 = 1/x => x^3 = 1 => x = 1
Therefore, transition points = 1/sqrt(2), 1, 2
Need to check numbers between those transition points

Range: Value of x, 1/x, 2x, x^2, Order
< 1/sqrt(2): 1/10, 10, 1/5, 1/100 x^2 < 2x < 1/x => I
1/sqrt(2) to 1: 0.99, 1/0.99, 1.98, ~1 x^2 < 1/x < 2x => II
1 to 2: 3/2, 2/3, 3, 9/4 1/x < x^2 < 2x (Not given)
> 2: 5/2, 2/5, 5, 25/4 1/x < 2x < x^2 (Not given)

Hence, only I & II could be true. ANSWER: D



Method: Using Inequalities (along with wavy line)



Split complex inequality into 2 simpler inequalities to see whether there is an overlap. If there is, that complex inequality could be true, otherwise not.

x = +
1st Inequality (I):
a) x^2 < 2x => x^2 - 2x < 0 => x(x-2) < 0 => 0 < x < 2
b) 2x < 1/x => 2x^2 < 1 => -1/sqrt(2) < x < 1/sqrt(2) => 0 < x < 1/sqrt(2) [since x=+]
Overlap: 0 < x < 1/sqrt(2) => I could be true

2nd Inequality (II):
a) x^2 < 1/x => x^3 < 1 => x < 1
b) 1/x < 2x => 1 < 2x^2 => x < -1/sqrt(2) or x > 1/sqrt(2) => x > 1/sqrt(2) [since x=+]
Overlap: 1/sqrt(2) < x < 1 => II could be true

3rd Inequality (III):
a) 2x < x^2 => 0 < x^2 - 2x => 0 < x(x-2) => x < 0 or x > 2 => x > 2 [since x=+]
b) x^2 < 1/x => x^3 < 1 => x < 1
Overlap: None => III could not be true
ANSWER: D


This Q has been explained in depth here: https://gmatclub.com/forum/inequalities ... l#p1582961
_________________
Most Comprehensive Article on How to Score a 700+ on the GMAT (NEW)
Verb Tenses Simplified


If you found my post useful, KUDOS are much appreciated. Giving Kudos is a great way to thank and motivate contributors, without costing you anything.
Target Test Prep Representative
User avatar
D
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 8125
Location: United States (CA)
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 18 Sep 2019, 09:58
Vavali wrote:
If x is positive, which of the following could be correct ordering of \(\frac{1}{x}\), \(2x\), and \(x^2\)?

I. \(x^2 < 2x < \frac{1}{x}\)

II. \(x^2 < \frac{1}{x} < 2x\)

III. \(2x < x^2 < \frac{1}{x}\)


(A) none
(B) I only
(C) III only
(D) I and II
(E) I, II and III


First, if x = 1/2, then 1/x = 2, 2x = 1, and x^2 = 1/4; i.e. x^2 < 2x < 1/x. Thus, Roman numeral I is possible. We eliminate answer choice A.

Since we eliminated the answer choice “none” and since 1/x is greater than x^2 in every Roman numeral; it must be true that x < 1.

For Roman numeral II, in order for 1/x < 2x to hold, we must have 2x^2 > 1, which is equivalent to x^2 > 1/2. This implies that x > 1/√2 or x < -1/√2. The latter is not possible because x is positive. Since √2 is roughly 1.41, we see that if we let x = 1/1.4 = 5/7, then we have 1/x = 7/5, 2x = 10/7, and x^2 = 25/49. In this case, we have x^2 < 1/x < 2x and thus, Roman numeral II is also possible.

Finally, for Roman numeral III to be true, we must have x^2 > 2x, or equivalently, x^2 - 2x > 0. Factoring the left hand side, we get x(x - 2) > 0. In order for the product of x and (x - 2) to be positive, either both of them must be positive or both of them must be negative. If both x and (x - 2) are positive, then x > 2; but then x^2 > 1/x. If both of them are negative, then x < 0 but this contradicts the fact that x is positive. Therefore, Roman numeral III is not possible.

Answer: D
_________________

Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Senior Manager
Senior Manager
avatar
G
Joined: 23 Nov 2016
Posts: 312
GMAT 1: 690 Q50 V33
GMAT ToolKit User Reviews Badge
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 20 Sep 2019, 11:59
Bunuel how to decide which ranges to be checked ?


Bunuel wrote:
If x is positive, which of the following could be the correct ordering of 1/x, 2x and x^2 ?

I. \(x^2<2x<\frac{1}{x}\)

II. \(x^2<\frac{1}{x}<2x\)

III. \(2x<x^2<\frac{1}{x}\)

(A) None
(B) I only
(C) III only
(D) I and II only
(E) I II and III

First note that we are asked "which of the following COULD be the correct ordering" not MUST be.
Basically we should determine relationship between \(x\), \(\frac{1}{x}\) and \(x^2\) in three areas: \(0<1<2<\).

\(x>2\)

\(1<x<2\)

\(0<x<1\)

When \(x>2\) --> \(x^2\) is the greatest and no option is offering this, so we know that x<2.
If \(1<x<2\) --> \(2x\) is greatest then comes \(x^2\) and no option is offering this.

So, we are left with \(0<x<1\):
In this case \(x^2\) is least value, so we are left with:

I. \(x^2<2x<\frac{1}{x}\) --> can \(2x<\frac{1}{x}\)? Can \(\frac{2x^2-1}{x}<0\), the expression \(2x^2-1\) can be negative or positive for \(0<x<1\). (You can check it either algebraically or by picking numbers)

II. \(x^2<\frac{1}{x}<2x\) --> can \(\frac{1}{x}<2x\)? The same here \(\frac{2x^2-1}{x}>0\), the expression \(2x^2-1\) can be negative or positive for \(0<x<1\). (You can check it either algebraically or by picking numbers)

Answer: D.

Second condition: \(x^2<\frac{1}{x}<2x\)

The question is which of the following COULD be the correct ordering not MUST be.

Put \(0.9\) --> \(x^2=0.81\), \(\frac{1}{x}=1.11\), \(2x=1.8\) --> \(0.81<1.11<1.8\). Hence this COULD be the correct ordering.

Hope it's clear.

_________________
If my post anyway helped you,please spare Kudos !
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 13384
Re: integers and inequalities  [#permalink]

Show Tags

New post 09 Oct 2019, 04:13
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Bot
Re: integers and inequalities   [#permalink] 09 Oct 2019, 04:13

Go to page   Previous    1   2   [ 37 posts ] 

Display posts from previous: Sort by

If x is positive, which of the following could be correct ordering of

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne