GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 14 Dec 2018, 23:58

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
  • Free GMAT Strategy Webinar

     December 15, 2018

     December 15, 2018

     07:00 AM PST

     09:00 AM PST

    Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.
  • $450 Tuition Credit & Official CAT Packs FREE

     December 15, 2018

     December 15, 2018

     10:00 PM PST

     11:00 PM PST

    Get the complete Official GMAT Exam Pack collection worth $100 with the 3 Month Pack ($299)

If x is positive, which of the following could be correct ordering of

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51215
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 05 Jul 2013, 01:26
Senior Manager
Senior Manager
avatar
Joined: 07 Sep 2010
Posts: 261
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 02 Oct 2013, 08:40
Hello Bunuel,
Can you show us graphical approach to this question.
I was able to draw the graph for all three equations and intersection points, however, I was not able to negate the third ordering. Would you please help me out.

Thanks
imhimanshu
P.S - How can I post graphs here.
Veritas Prep GMAT Instructor
User avatar
P
Joined: 16 Oct 2010
Posts: 8678
Location: Pune, India
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 02 Oct 2013, 20:21
1
imhimanshu wrote:
Hello Bunuel,
Can you show us graphical approach to this question.
I was able to draw the graph for all three equations and intersection points, however, I was not able to negate the third ordering. Would you please help me out.

Thanks
imhimanshu
P.S - How can I post graphs here.


Here is the graph:
Attachment:
Ques3.jpg
Ques3.jpg [ 11.4 KiB | Viewed 6924 times ]


III. 2x < x^2 < 1/x

For 2x to be less than x^2, the graph of 2x should lie below the graph of x^2. This happens when the graph of 2x is the red line.
For x^2 to be less than 1/x at the same time, the graph of x^2 should lie below the graph of 1/x in the region of the red line. But in the region of the red line, the graph of x^2 is never below the graph of 1/x. It will never be because graph of 1/x is going down toward y = 0 while graph of x^2 is going up toward y = infinity.
Hence this inequality will not hold for any region.
_________________

Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

Intern
Intern
avatar
Joined: 09 Dec 2013
Posts: 31
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 22 Feb 2014, 07:48
I picked numbers: 1/2, 1, 3/2, 2, 3

However, it didn occur to me that I must look something like 0.9. Request experts to help me understand the logic behind picking such numbers. Have my actual GMAT in 10 days, any help would be immensely valuable!

Thanks!
Veritas Prep GMAT Instructor
User avatar
P
Joined: 16 Oct 2010
Posts: 8678
Location: Pune, India
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 24 Feb 2014, 01:12
1
1
abdb wrote:
I picked numbers: 1/2, 1, 3/2, 2, 3

However, it didn occur to me that I must look something like 0.9. Request experts to help me understand the logic behind picking such numbers. Have my actual GMAT in 10 days, any help would be immensely valuable!

Thanks!


I have answered your query using this very question here: http://www.veritasprep.com/blog/2013/05 ... on-points/
_________________

Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

Director
Director
User avatar
B
Joined: 10 Mar 2013
Posts: 503
Location: Germany
Concentration: Finance, Entrepreneurship
GMAT 1: 580 Q46 V24
GPA: 3.88
WE: Information Technology (Consulting)
GMAT ToolKit User
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 29 Dec 2015, 15:01
Vavali wrote:
If x is positive, which of the following could be correct ordering of \(\frac{1}{x}\), \(2x\), and \(x^2\)?

(I) \(x^2 < 2x < \frac{1}{x}\)
(II) \(x^2 < \frac{1}{x} < 2x\)
(III) \(2x < x^2 < \frac{1}{x}\)

(a) none
(b) I only
(c) III only
(d) I and II
(e) I, II and III


first, let's get rid of at least one x in the given expressions, as x is positive just multiply the expressions by x and we'll get
(I) \(x^3 < 2x^2 < 1\)
as \(2x^2\) < 1 we must pick a value which is < 1, let's pick 1/2 and it works. COULD BE

(II) \(x^3 < 1< 2x^2\)
Here we can see that \(x^3\)<1 so we must pick a value <1 BUT which will make \(2x^2\) >1 if possible. Let's pick 0.9 and it works also here. COULD BE

(III) \(2x^2 < x^3 < 1\)
We must pick a value < 1 BUT as we've already seen, if we pick a fraction < 1 we cannot make \(2x^2 < x^3\), in the above cases it \(2x^2 was > x^3\) each time we picked a fraction < 1

Hope it helps.
_________________

When you’re up, your friends know who you are. When you’re down, you know who your friends are.

Share some Kudos, if my posts help you. Thank you !

800Score ONLY QUANT CAT1 51, CAT2 50, CAT3 50
GMAT PREP 670
MGMAT CAT 630
KAPLAN CAT 660

Veritas Prep GMAT Instructor
User avatar
P
Joined: 16 Oct 2010
Posts: 8678
Location: Pune, India
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 03 Jan 2016, 22:06
dep91 wrote:
Hi Experts,
In solving x^2<2x=>x^2-2x<0=>x(x-2)<0=>x<0 or x<2

why did we ignore x<0 is it bcz we are told in question that x is positive number...it is so then why can't it be ignored in statement 3...btw I understood the number picking methodology, just little bit curious...Thanks in advance.



x(x-2)<0

gives us

0 < x < 2

Check this post for details on this:
http://www.veritasprep.com/blog/2012/06 ... e-factors/
_________________

Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

Manager
Manager
avatar
Joined: 24 May 2016
Posts: 146
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 26 Aug 2016, 01:35
Vavali wrote:
If x is positive, which of the following could be correct ordering of \(\frac{1}{x}\), \(2x\), and \(x^2\)?

(I) \(x^2 < 2x < \frac{1}{x}\)
(II) \(x^2 < \frac{1}{x} < 2x\)
(III) \(2x < x^2 < \frac{1}{x}\)

(a) none
(b) I only
(c) III only
(d) I and II
(e) I, II and III


I) Let's break this ordering into two parts:

X^2 < 2X ---> X < 2
2X < 1/X ; 2 X^2 < 1 ; X^2 < 1/2 ; X < \(\sqrt{2}\)/2, which roughly is 0.7.

X < 0.7 ---> Hence, if we plug X = 1/2, we will satisfy the ordering ---> 1/4 < 1 < 2

II) Let's break this ordering into two parts:

X^2 < 1/X ; X^3 < 1 ; X < 1
1/X < 2X ; 2 X^2 > 1; X^2 > 1/2 ; X > \(\sqrt{2}\)/2, which roughly is 0.7.

0.7 < X < 1 ---> Hence, if we plug X = 9/10, we will satisfy the ordering ---> 81/100 < 10/9 < 18/10

III) Let's break this ordering into two parts:

2X < X^2 ; X > 2
X^2 < 1/X ; X^3 < 1 ; X < 1

Both inequalities contradict each other. If we satisfy one inequality, we cannot satisfy the other. So:

If X = 3 ---> We satisfy 2X < X^2, but not X^2 < 1/X.
If X = 1/2 ---> We satisfy X^2 < 1/X, but not 2X < X^2.

Hence, we cannot satisfy this ordering.

Answer: D
Intern
Intern
avatar
Joined: 30 Jun 2016
Posts: 14
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 12 Oct 2016, 09:06
Bunuel wrote:
ykaiim wrote:
IMO B.
for 0<x<1, only statement I holds.
Brunuel, if u put x=1/2:
II. II. x^2<1/x<2x >>>>> will not hold true.
x^2 = 1/4, 1/x=2 and 2x=1 then this expression will not hold.
1/4<2<1 [Incorrect]

If x=1/9 then:
x^2=1/81, 1/x=9 and 2x=2/9
1/81<9<2/9 [Incorrect]

Let's check the III option for above values:
III. 2x<x^2<1/x
For x=1/2: 1<1/4<2 [Incorrect]
For x=1/9: 2/9<1/81<9 [Incorrect]

So, B should be the correct answer. Please check.


OA IS D.

Algebraic approach is given in my solution. Here is number picking:

I. \(x^2<2x<\frac{1}{x}\) --> \(x=\frac{1}{2}\) --> \(x^2=\frac{1}{4}\), \(2x=1\), \(\frac{1}{x}=2\) --> \(\frac{1}{4}<1<2\). Hence this COULD be the correct ordering.

II. \(x^2<\frac{1}{x}<2x\) --> \(x=0.9\) --> \(x^2=0.81\), \(\frac{1}{x}=1.11\), \(2x=1.8\) --> \(0.81<1.11<1.8\). Hence this COULD be the correct ordering.

III. \(2x<x^2<\frac{1}{x}\) --> \(x^2\) to be more than \(2x\), \(x\) must be more than 2 (for positive \(x-es\)). But if \(x>2\), then \(\frac{1}{x}\) is the least value from these three and can not be more than \(2x\) and \(x^2\). So III can not be true.

Thus I and II could be correct ordering and III can not.

Answer: D.




how did u choose the numbers for plugging in. i guess thats the trick in inequalities
Veritas Prep GMAT Instructor
User avatar
P
Joined: 16 Oct 2010
Posts: 8678
Location: Pune, India
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 14 Oct 2016, 01:11
vsvikas wrote:
how did u choose the numbers for plugging in. i guess thats the trick in inequalities


Use transition points.
Discussed here: https://www.veritasprep.com/blog/2013/0 ... on-points/
_________________

Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

Manager
Manager
avatar
B
Joined: 01 Nov 2016
Posts: 66
Concentration: Technology, Operations
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 27 Mar 2017, 19:53
There are three equations. All three equations are fairly simple to test, so the quickest way to get the answer is to guess and check. But what points should we use to test? Well since there are three equations, we can set them to each other to find three critical points. Once we get the critical points, test above and below those critical points and you can find all the different ways the equations relate to each other.

    Set \(\frac{1}{x} = 2x\) so a critical point is: \(\frac{1}{\sqrt{2}}=x\)

    Set \(\frac{1}{x} = x^2\) so a critical point is: \(1 = x\)

    Set \(2x = x^2\) so a critical point is: \(2 = x\)

We have to test below and above each critical point. So the minimum tests are four:

    At \(x=\frac{1}{10}\) the order is \(x^2\) < 2x < \(\frac{1}{x}\)

    At \(x=\frac{9}{10}\) the order is \(x^2\) < \(\frac{1}{x}\) < 2x

    At \(x=\frac{3}{2}\) the order is \(\frac{1}{x}\) < \(x^2\) < 2x

    At \(x=\frac{5}{2}\) the order is \(\frac{1}{x}\) < 2x < \(x^2\)

Out of the results, only the first two are provided as answers. So the correct answer is D, or "I and II only."
Intern
Intern
avatar
Joined: 26 Jan 2013
Posts: 5
If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 19 Jul 2017, 03:37
In all the three statements X^2 < 1/X.
Which means, X^2 < X^(-1).
So, greater power having lesser value and lesser power having greater value is possible only if 0 < x < 1.
So, if x = 0.1, Statement-I is true.
If x = 0.9, Statement-II is true.
And for any value of x statement -III if not true.

Hence, the correct answer if D.
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2830
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 25 Jul 2017, 09:55
Vavali wrote:
If x is positive, which of the following could be correct ordering of \(\frac{1}{x}\), \(2x\), and \(x^2\)?

I. \(x^2 < 2x < \frac{1}{x}\)

II. \(x^2 < \frac{1}{x} < 2x\)

III. \(2x < x^2 < \frac{1}{x}\)


(A) none
(B) I only
(C) III only
(D) I and II
(E) I, II and III


We need to equate these expressions first. Of course, we can only equate two of them at a time. So we have three equations to solve, 1/x = 2x, 1/x = x^2, and 2x = x^2.

1) 1/x = 2x

2x^2 = 1

x^2 = 1/2

x = √(1/2) = (√2)/2 ≈ 1.4/2 = 0.7

2) 1/x = x^2

x^3 = 1

x = ∛1 = 1

3) 2x = x^2

Dividing both sides by x (since we know x > 0), we have:

2 = x

From the three equations above, we see that x = (√2)/2, 1, and 2. These numbers are critical since they make two of the three expressions equal to one another. Thus, we need to consider all the values that are not exactly these numbers in order to determine the order of these expressions. That is, we need to consider the following intervals:

i) 0 < x < (√2)/2
ii) (√2)/2 < x < 1
iii) 1 < x < 2
iv) x > 2

However, for each of these intervals, we can just pick a representative number (for example, in 1 < x < 2, we can pick 1.5) to determine the order of these expressions.

i) 0 < x < (√2)/2

Since (√2)/2 ≈ 0.7, we can let x = ½. Then 1/x = 2, 2x = 1, and x^2 = ¼. Thus, we have x^2 < 2x < 1/x, and hence Roman numeral I could be true.

ii) (√2)/2 < x < 1

We can let x = ¾. Then 1/x = 4/3, 2x = 3/2, and x^2 = 9/16. Thus, we have x^2 < 1/x < 2x, and hence Roman numeral II could be true.

iii) 1 < x < 2

We can let x = 3/2. Then 1/x = ⅔, 2x = 3, and x^2 = 9/4. Thus, we have 1/x < x^2 < 2x. (However, this is not one of the given Roman numerals.

iv) x > 2

We can let x = 3. Then 1/x = 1/3, 2x = 6, and x^2 = 9. Thus, we have 1/x < 2x < x^2. However, this is not one of the given Roman numerals.

We see that only Roman numerals I and II could be true.

Answer: D
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

CEO
CEO
User avatar
D
Joined: 11 Sep 2015
Posts: 3237
Location: Canada
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 17 Jan 2018, 15:29
Top Contributor
Vavali wrote:
If x is positive, which of the following could be correct ordering of \(\frac{1}{x}\), \(2x\), and \(x^2\)?

I. \(x^2 < 2x < \frac{1}{x}\)

II. \(x^2 < \frac{1}{x} < 2x\)

III. \(2x < x^2 < \frac{1}{x}\)


(A) none
(B) I only
(C) III only
(D) I and II
(E) I, II and III

Let's start by PLUGGING IN some positive values of x and see what we get.

x = 1/2
1/x = 2
2x = 1
x² = 1/4
So, we get x² < 2x < 1/x
This matches statement I.

x = 3/4
1/x = 4/3
2x = 3/2
x² = 9/16
So, we get x² < 1/x < 2x
This matches statement II

x = 3
1/x = 1/3
2x = 6
x² = 9
So, we get 1/x < 2x < x²
NO MATCHES

At this point, the correct answer is either D or E.
If you're pressed for time, you might have to guess.

Alternatively, you can use some algebra to examine statement III (2x < x² < 1/x)
Notice that there are 2 inequalities here (2x < x² and x² < 1/x)
Take 2x < x² and divide both sides by x to get 2 < x
Take x² < 1/x and multiply both sides by x to get x^3 < 1, which means x < 1
Hmmm, so x is greater than 2 AND less than 1. This is IMPOSSIBLE, so statement III cannot be true.

Answer = D

Cheers,
Brent
_________________

Test confidently with gmatprepnow.com
Image

Intern
Intern
avatar
B
Joined: 23 Dec 2017
Posts: 3
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 15 Feb 2018, 14:46
Bunuel, do you know of any similar questions that you could share? Preferably from the Official Guide?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51215
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 15 Feb 2018, 20:25
Carminaburana13 wrote:
Bunuel, do you know of any similar questions that you could share? Preferably from the Official Guide?


Inequalities and Must or Could be True Questions from Official Guide: https://gmatclub.com/forum/search.php?s ... mit=Search

Check our questions' bank: https://gmatclub.com/forum/search.php?view=search_tags
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
S
Joined: 20 Feb 2015
Posts: 77
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 08 Sep 2018, 09:18
Bunuel wrote:
gautamsubrahmanyam wrote:
I am not sure how the OA is D

when x=1/2 then 1/x is 2 ,2x is 1 and x^2 is 1/2 ,this satisfies (I) x^2<2x<1/x

when x =3 then 1/x is 1/3, 2x is 6 and x^2 is 9 ,this does not satisfy (II)

when x = 1/10 then 1/x is 10 , 2x is 1/5 and x^2 is 1/100,this again does not satify (II)

Even -ve numbers dont seem to work

when x=-3 then 1/x is -1/3 ,2x is -6 and X^2=9,this does not satisfy (II)
x=-1/3 then 1/x is -3 ,2x is -2/3 and x^2=-1/9,this does not satisfy (II)

Can any one give an example which satisfies option (II)


If x is positive, which of the following could be the correct ordering of 1/x, 2x and x^2 ?

I. \(x^2<2x<\frac{1}{x}\)

II. \(x^2<\frac{1}{x}<2x\)

III. \(2x<x^2<\frac{1}{x}\)

(A) None
(B) I only
(C) III only
(D) I and II only
(E) I II and III

First note that we are asked "which of the following COULD be the correct ordering" not MUST be.
Basically we should determine relationship between \(x\), \(\frac{1}{x}\) and \(x^2\) in three areas: \(0<1<2<\).

\(x>2\)

\(1<x<2\)

\(0<x<1\)

When \(x>2\) --> \(x^2\) is the greatest and no option is offering this, so we know that x<2.
If \(1<x<2\) --> \(2x\) is greatest then comes \(x^2\) and no option is offering this.

So, we are left with \(0<x<1\):
In this case \(x^2\) is least value, so we are left with:

I. \(x^2<2x<\frac{1}{x}\) --> can \(2x<\frac{1}{x}\)? Can \(\frac{2x^2-1}{x}<0\), the expression \(2x^2-1\) can be negative or positive for \(0<x<1\). (You can check it either algebraically or by picking numbers)

II. \(x^2<\frac{1}{x}<2x\) --> can \(\frac{1}{x}<2x\)? The same here \(\frac{2x^2-1}{x}>0\), the expression \(2x^2-1\) can be negative or positive for \(0<x<1\). (You can check it either algebraically or by picking numbers)

Answer: D.

Second condition: \(x^2<\frac{1}{x}<2x\)

The question is which of the following COULD be the correct ordering not MUST be.

Put \(0.9\) --> \(x^2=0.81\), \(\frac{1}{x}=1.11\), \(2x=1.8\) --> \(0.81<1.11<1.8\). Hence this COULD be the correct ordering.

Hope it's clear.


Bunuel How should we know the three areas(range)? is it a general rule? In questions like these i generally plug fractions and integers,but it will never occur to me that 0.9 has to be plugged...
_________________

You miss 100% of the shots you don't take..

KUDOS Please..!!

Senior Manager
Senior Manager
avatar
S
Joined: 29 Jun 2017
Posts: 402
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 09 Sep 2018, 01:45
we have to use both picking specific numbers to plug into the inequality and algebra to solve this problem for 2 minutes.
that is why this problem is hard.
Intern
Intern
avatar
B
Joined: 30 Aug 2018
Posts: 22
Re: If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 06 Oct 2018, 03:15
It took me a little more than 2 minutes (2 Mins 22 second to solve), Is it okay?
Manager
Manager
avatar
S
Joined: 10 Oct 2018
Posts: 92
Location: United States
Schools: Sloan (MIT)
GPA: 4
If x is positive, which of the following could be correct ordering of  [#permalink]

Show Tags

New post 14 Oct 2018, 04:42
Can't any one or two numbers(that are same) be used in all the three statements? The problem is plugging number in statement II is not satisfying. Pls explain by putting in same numbers in all statements. (I got that Statment 3 is not satisfying)

Posted from my mobile device
_________________

Kudos OK Please!!

GMAT Club Bot
If x is positive, which of the following could be correct ordering of &nbs [#permalink] 14 Oct 2018, 04:42

Go to page   Previous    1   2   3    Next  [ 45 posts ] 

Display posts from previous: Sort by

If x is positive, which of the following could be correct ordering of

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.