Vavali wrote:
If x is positive, which of the following could be correct ordering of \(\frac{1}{x}\), \(2x\), and \(x^2\)?
I. \(x^2 < 2x < \frac{1}{x}\)
II. \(x^2 < \frac{1}{x} < 2x\)
III. \(2x < x^2 < \frac{1}{x}\)
(A) none
(B) I only
(C) III only
(D) I and II
(E) I, II and III
I would typically start here by seeing if I can spot any obvious x-values that satisfy any of the statements.
For statements both I and II, \(x^2\) is the smallest value.
This typically occurs when \(0<x<1\).
So let's test a value in that range.
If \(x = 0.1\), we get:
Statement I. \((0.1)^2 < 2(0.1) < \frac{1}{(0.1)}\), which simplifies to: \(0.01 < 0.2 < 10\) WORKS!!
So, statement I could be true, which means we can eliminate answer choices A and C, since they incorrectly state that statement I can't be true
Aside: Since \(x = 0.1\) makes statement I true, I know that it won't make the other two statements true since they have different orderings of \(x^2\), \(2x\) and \(\frac{1}{x}\)Now let's analyze statement II: \(x^2 < \frac{1}{x} < 2x\)
Since we know \(x\) is positive, we can safely multiply all parts by \(x\) to get: \(x^3 < 1 < 2x^2\)
If \(x^3 < 1\), then we know \(x<1\).
What about this part of the inequality: \(1 < 2x^2\)
Divide both sides by \(2\) to get: \(\frac{1}{2} < x^2\)
Find the square root of both sides: \(\sqrt{\frac{1}{2}} < x\)
We can rewrite this as follows: \(\frac{1}{\sqrt{2}}<x\)
ASIDE: Before test day, be sure to memorize the following approximations:
√2 ≈ 1.4
√3 ≈ 1.7
√5 ≈ 2.2Substitute 1.4 for √2 to get: \(\frac{1}{1.4}<x\)
Approximate: \(0.7 < x\)
When we combine our two conclusions we see that statement II is true when \(0.7 < x < 1\)
To confirm, let's plug \(x = 0.8\) into statement II to get: \((0.8)^2 < \frac{1}{0.8} < 2(0.8)\), which simplifies (approximately) to \(0.64 < 1.25 < 1.6\) WORKS!
So, statement II could be true, which means we can eliminate answer choice B, since it incorrectly states that statement II can't be true
Now onto statement III: \(2x < x^2 < \frac{1}{x}\)
Take this part of the inequality: \(2x < x^2\)
Subtract \(2x\) from both sides: \(0 < x^2 - 2x\)
Factor: \(0 < x(x- 2)\)
Since we already know \(x\) is positive, the only way \(x(x- 2)\) can be positive is if \(x > 2\)
However, if \(x > 2\), then there's no way that \(\frac{1}{x}\) can have the greatest value.
Therefore, statement III can never be true.
Answer: D _________________
Brent Hanneson – Creator of gmatprepnow.com
I’ve spent the last 20 years helping students overcome their difficulties with GMAT math, and the biggest thing I’ve learned is…
Many students fail to maximize their quant score NOT because they lack the skills to solve certain questions but because they don’t understand what the GMAT is truly testing -
Learn more