December 20, 2018 December 20, 2018 10:00 PM PST 11:00 PM PST This is the most inexpensive and attractive price in the market. Get the course now! December 22, 2018 December 22, 2018 07:00 AM PST 09:00 AM PST Attend this webinar to learn how to leverage Meaning and Logic to solve the most challenging Sentence Correction Questions.
Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 15 Apr 2010
Posts: 152

Is 0 (zero) to be considered as a multiple of every number?
[#permalink]
Show Tags
03 Nov 2010, 05:45
I just got a question on a practice test wrong because I didn't consider 0 (zero) to be a multiple of 5 (or any integer for that matter). So, what's the rule on the GMAT? Do we consider 0 to be a multiple of every number?
_________________
Give [highlight]KUDOS [/highlight] if you like my post.
Always do things which make you feel ALIVE!!!



Math Expert
Joined: 02 Sep 2009
Posts: 51280

Re: Is 0 (zero) to be considered as a multiple of every number?
[#permalink]
Show Tags
03 Nov 2010, 06:15
siyer wrote: I just got a question on a practice test wrong because I didn't consider 0 (zero) to be a multiple of 5 (or any integer for that matter). So, what's the rule on the GMAT?
Do we consider 0 to be a multiple of every number? An integer \(a\) is a multiple of an integer \(b\) means that \(\frac{a}{b}=integer\): so, as 0 divided by any integer (except zero itself) yields an integer then yes, zero is a multiple of every integer (except zero itself). Also on GMAT when we are told that \(a\) is divisible by \(b\) (or which is the same: "\(a\) is multiple of \(b\)", or "\(b\) is a factor of \(a\)"), we can say that:1. \(a\) is an integer; 2. \(b\) is an integer; 3. \(\frac{a}{b}=integer\). Hope it helps.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Senior Manager
Joined: 25 May 2010
Posts: 296
Location: United States
Concentration: Strategy, Finance
GMAT 1: 590 Q47 V25 GMAT 2: 560 Q47 V20 GMAT 3: 600 Q47 V25 GMAT 4: 680 Q49 V34

Re: Is 0 (zero) to be considered as a multiple of every number?
[#permalink]
Show Tags
03 Nov 2010, 06:21
Here is very similar information and broad answer. http://www.manhattangmat.com/forums/num ... t4998.html
_________________
"Whether You Think You Can or Can't, You're Right"Henry Ford 680 Debrief 600 Debrief 590 Debrief My GMAT Journey



Manager
Joined: 15 Apr 2010
Posts: 152

Re: Is 0 (zero) to be considered as a multiple of every number?
[#permalink]
Show Tags
03 Nov 2010, 06:21
Wow!! Thanks guys!
_________________
Give [highlight]KUDOS [/highlight] if you like my post.
Always do things which make you feel ALIVE!!!



Senior Manager
Joined: 25 May 2010
Posts: 296
Location: United States
Concentration: Strategy, Finance
GMAT 1: 590 Q47 V25 GMAT 2: 560 Q47 V20 GMAT 3: 600 Q47 V25 GMAT 4: 680 Q49 V34

Re: Is 0 (zero) to be considered as a multiple of every number?
[#permalink]
Show Tags
03 Nov 2010, 06:56
WOW. I got my first KUDOS!!!! Need many to get free tests.
_________________
"Whether You Think You Can or Can't, You're Right"Henry Ford 680 Debrief 600 Debrief 590 Debrief My GMAT Journey



Manager
Joined: 09 Nov 2013
Posts: 74

Re: Is 0 (zero) to be considered as a multiple of every number?
[#permalink]
Show Tags
13 Mar 2014, 01:54
Bunuel wrote: siyer wrote: I just got a question on a practice test wrong because I didn't consider 0 (zero) to be a multiple of 5 (or any integer for that matter). So, what's the rule on the GMAT?
Do we consider 0 to be a multiple of every number? An integer \(a\) is a multiple of an integer \(b\) means that \(\frac{a}{b}=integer\): so, as 0 divided by any integer (except zero itself) yields an integer then yes, zero is a multiple of every integer (except zero itself). Also on GMAT when we are told that \(a\) is divisible by \(b\) (or which is the same: "\(a\) is multiple of \(b\)", or "\(b\) is a factor of \(a\)"), we can say that:1. \(a\) is an integer; 2. \(b\) is an integer; 3. \(\frac{a}{b}=integer\). Hope it helps. Dear Bunuel, And the first factor of any number(>=0) is 1. am I right? thanks Sid



Math Expert
Joined: 02 Sep 2009
Posts: 51280

Re: Is 0 (zero) to be considered as a multiple of every number?
[#permalink]
Show Tags
13 Mar 2014, 02:17
sidpopy wrote: Bunuel wrote: siyer wrote: I just got a question on a practice test wrong because I didn't consider 0 (zero) to be a multiple of 5 (or any integer for that matter). So, what's the rule on the GMAT?
Do we consider 0 to be a multiple of every number? An integer \(a\) is a multiple of an integer \(b\) means that \(\frac{a}{b}=integer\): so, as 0 divided by any integer (except zero itself) yields an integer then yes, zero is a multiple of every integer (except zero itself). Also on GMAT when we are told that \(a\) is divisible by \(b\) (or which is the same: "\(a\) is multiple of \(b\)", or "\(b\) is a factor of \(a\)"), we can say that:1. \(a\) is an integer; 2. \(b\) is an integer; 3. \(\frac{a}{b}=integer\). Hope it helps. Dear Bunuel, And the first factor of any number(>=0) is 1. am I right? thanks Sid Yes, the smallest factor, the smallest positive divisor of any positive integer is 1.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 17 Mar 2014
Posts: 35
Location: India
Concentration: Strategy, Marketing
WE: Medicine and Health (Health Care)

Re: Is 0 (zero) to be considered as a multiple of every number?
[#permalink]
Show Tags
05 Sep 2014, 03:16
Bunuel wrote: siyer wrote: I just got a question on a practice test wrong because I didn't consider 0 (zero) to be a multiple of 5 (or any integer for that matter). So, what's the rule on the GMAT?
Do we consider 0 to be a multiple of every number? An integer \(a\) is a multiple of an integer \(b\) means that \(\frac{a}{b}=integer\): so, as 0 divided by any integer (except zero itself) yields an integer then yes, zero is a multiple of every integer (except zero itself). Also on GMAT when we are told that \(a\) is divisible by \(b\) (or which is the same: "\(a\) is multiple of \(b\)", or "\(b\) is a factor of \(a\)"), we can say that:1. \(a\) is an integer; 2. \(b\) is an integer; 3. \(\frac{a}{b}=integer\). Hope it helps. Hi, Then why LCM of two numbers not zero?



Math Expert
Joined: 02 Sep 2009
Posts: 51280

Is 0 (zero) to be considered as a multiple of every number?
[#permalink]
Show Tags
05 Sep 2014, 03:47
tushain wrote: Bunuel wrote: siyer wrote: I just got a question on a practice test wrong because I didn't consider 0 (zero) to be a multiple of 5 (or any integer for that matter). So, what's the rule on the GMAT?
Do we consider 0 to be a multiple of every number? An integer \(a\) is a multiple of an integer \(b\) means that \(\frac{a}{b}=integer\): so, as 0 divided by any integer (except zero itself) yields an integer then yes, zero is a multiple of every integer (except zero itself). Also on GMAT when we are told that \(a\) is divisible by \(b\) (or which is the same: "\(a\) is multiple of \(b\)", or "\(b\) is a factor of \(a\)"), we can say that:1. \(a\) is an integer; 2. \(b\) is an integer; 3. \(\frac{a}{b}=integer\). Hope it helps. Hi, Then why LCM of two numbers not zero? By definition the lowest common multiple of two integers a and b is the smallest positive integer that is a multiple both of a and of b.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 17 Mar 2014
Posts: 35
Location: India
Concentration: Strategy, Marketing
WE: Medicine and Health (Health Care)

Is 0 (zero) to be considered as a multiple of every number?
[#permalink]
Show Tags
05 Sep 2014, 06:16
Quote: By definition the lowest common multiple of two integers a and b is the smallest positive integer that is a multiple both of a and of b. Thanks Bunuel One more doubt: Can LCM, HCF be stated for ve numbers: for eg. what is the LCM of 36,12 or HCF of 12,+36 ?



Senior SC Moderator
Joined: 14 Nov 2016
Posts: 1324
Location: Malaysia

Re: Is 0 (zero) to be considered as a multiple of every number?
[#permalink]
Show Tags
14 Feb 2017, 22:54
Bunuel wrote: siyer wrote: I just got a question on a practice test wrong because I didn't consider 0 (zero) to be a multiple of 5 (or any integer for that matter). So, what's the rule on the GMAT?
Do we consider 0 to be a multiple of every number? An integer \(a\) is a multiple of an integer \(b\) means that \(\frac{a}{b}=integer\): so, as 0 divided by any integer (except zero itself) yields an integer then yes, zero is a multiple of every integer (except zero itself). Also on GMAT when we are told that \(a\) is divisible by \(b\) (or which is the same: "\(a\) is multiple of \(b\)", or "\(b\) is a factor of \(a\)"), we can say that:1. \(a\) is an integer; 2. \(b\) is an integer; 3. \(\frac{a}{b}=integer\). Hope it helps. Dear Bunuel, Does zero (0) consider as consecutive even integers? (0)(2)(4)(6)(8)
_________________
"Be challenged at EVERY MOMENT."
“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”
"Each stage of the journey is crucial to attaining new heights of knowledge."
Rules for posting in verbal forum  Please DO NOT post short answer in your post!
Advanced Search : https://gmatclub.com/forum/advancedsearch/



Math Expert
Joined: 02 Sep 2009
Posts: 51280

Re: Is 0 (zero) to be considered as a multiple of every number?
[#permalink]
Show Tags
14 Feb 2017, 23:33
ziyuenlau wrote: Bunuel wrote: siyer wrote: I just got a question on a practice test wrong because I didn't consider 0 (zero) to be a multiple of 5 (or any integer for that matter). So, what's the rule on the GMAT?
Do we consider 0 to be a multiple of every number? An integer \(a\) is a multiple of an integer \(b\) means that \(\frac{a}{b}=integer\): so, as 0 divided by any integer (except zero itself) yields an integer then yes, zero is a multiple of every integer (except zero itself). Also on GMAT when we are told that \(a\) is divisible by \(b\) (or which is the same: "\(a\) is multiple of \(b\)", or "\(b\) is a factor of \(a\)"), we can say that:1. \(a\) is an integer; 2. \(b\) is an integer; 3. \(\frac{a}{b}=integer\). Hope it helps. Dear Bunuel, Does zero (0) consider as consecutive even integers? (0)(2)(4)(6)(8) 0 is an even integer, so it can be a part of the sequence of even numbers.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 11 Apr 2017
Posts: 7

Re: Is 0 (zero) to be considered as a multiple of every number?
[#permalink]
Show Tags
31 Jul 2018, 18:48
Hi Bunuel , A quick one. Suppose a=4.5, b=1.5; a/b would still be an integer. So unless mentioned in the question about the nature of "a" and "b", shouldn't we consider fractions as well for Data Sufficiency questions? Really appreciate your time! Cheers, Sushil



Math Expert
Joined: 02 Sep 2009
Posts: 51280

Re: Is 0 (zero) to be considered as a multiple of every number?
[#permalink]
Show Tags
31 Jul 2018, 19:47




Re: Is 0 (zero) to be considered as a multiple of every number? &nbs
[#permalink]
31 Jul 2018, 19:47






