Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Quant Quizzes are back with a Bang and with lots of Prizes. The first Quiz will be on 8th Dec, 6PM PST (7:30AM IST). The Quiz will be Live for 12 hrs. Solution can be posted anytime between 6PM-6AM PST. Please click the link for all of the details.
Join IIMU Director to gain an understanding of DEM program, its curriculum & about the career prospects through a Q&A chat session. Dec 11th at 8 PM IST and 6:30 PST
Enter The Economist GMAT Tutor’s Brightest Minds competition – it’s completely free! All you have to do is take our online GMAT simulation test and put your mind to the test. Are you ready? This competition closes on December 13th.
Attend a Veritas Prep GMAT Class for Free. With free trial classes you can work with a 99th percentile expert free of charge. Learn valuable strategies and find your new favorite instructor; click for a list of upcoming dates and teachers.
Does GMAT RC seem like an uphill battle? e-GMAT is conducting a free webinar to help you learn reading strategies that can enable you to solve 700+ level RC questions with at least 90% accuracy in less than 10 days.
Re: What is the remainder when (3^84)/26
[#permalink]
Show Tags
24 Oct 2015, 11:58
8
6
BrainLab wrote:
Dear experts, do you think this is a valid method ? 3^84 has a unit digit 1, so the remainder is 1 Answer(B)
Not necessarily. You did get the correct answer but with a 'lucky' approach. 3^4 also has a unit digit 1 but remainder of 3^4(=81) when you divide it by 26 is 3 and not 1.
So for this and other similar questions try to find a number closest to either the divisor or a multiple of the divisor.
You can clearly see that 3^3=27=26+1. Use this to your advantage as follows:
\(3^{84} = (3^3)^{28} = (27)^{28} = (26+1)^{28}\)
Applying the binomial theorem to expand \((a+b)^n = a^n*b^0+a^{n-1}*b^1....+a^1*b^{n-1}+a^0*b^n\), you get
\((26+1)^{28} = 26^{28}+26^{27}*1^1...26^1*1^{27}+26^0*1^{28}\), so apart from the last term, all other terms have 26 and thus you will get a remainder of 0 with all but 1 terms in this expanded form.
Thus the remainder will be = remainder of \(\frac{26^0*1^{28}}{26}\) = 1
Re: What is the remainder when (3^84)/26
[#permalink]
Show Tags
24 Oct 2015, 13:32
2
3
BrainLab wrote:
Dear experts, do you think this is a valid method ? 3^84 has a unit digit 1, so the remainder is 1 Answer(B)
No, it is not a correct approach. You can use units digit to guide you in finding the remainder when dividing by 2, 5, or 10 for example. For example \(\frac{12}{5}\) and \(\frac{122222}{5}\) have the same remainder. The way I approach these types of remainder questions, is I first look at the divisor. If it is a small divisor that is neither 2,5, nor 10, I will choose between looking at the cyclicity of the base raised to a positive exponent divided by the divisor and binomial expansion.
For example consider finding the remainder for \(\frac{2^{86}}{7}\). Since the divisor is not 2,5, or 10, looking at the units digit wouldn't work. If I were to use the cyclicity method, I would start by listing, \(\frac{2^{1}}{7}\)yields remainder of 2
\(\frac{2^{2}}{7}\)yields remainder of 4
\(\frac{2^{3}}{7}\)yields remainder of 1
\(\frac{2^{4}}{7}\)yields remainder of 2
There is a cyclicity of 3, since 86/3 yields remainder of 2 then the remainder of \(\frac{2^{86}}{7}\), will be the same remainder of \(\frac{2^{2}}{7}\),which as remainder of 4
Then I will look at the individual remainders of each of the 2 terms when dividing by 7. For example let's say you wanted to find the remainder of \(\frac{(18*23)}{7}\). Mod(\(\frac{18}{7}\)) is 4. Mod(\(\frac{23}{7}\)) is 2. Combine 4 and 2 by multiplication because the operation in question is multiplication and then find the remainder. So the remainder of \(\frac{(4*2)}{7}\) is 1 and this is the answer.
This can be done with negative remainders too. For example let's say you wanted to find the remainder of \(\frac{(23-18)}{7}\). Combine 2 and 4 by subtraction and then find the remainder. So the remainder of \(\frac{(2-4)}{7}\) is 5. When you have a negative remainder, find the remainder first as if the numerator was positive and then subtract from the divisor. If you had positive 2 on top, the remainder would have been 2, but you have negative 2, so subtract positive 2 from 7 and you get a remainder of 5.
Back to the question. The remainder of \(\frac{(7+1)^{28}}{7}\) is 1; every term will be divisible by 7 except the last term,which is \(1^{28}.\) See Engr2012's above explanation regarding binomial expansion. The remainder of \(\frac{2^2}{7}\) is 4. Combine 1 and 4 by multiplication and then find the remainder. So the remainder of \(\frac{(1*4)}{7}\) is 4.
Since the divisor in the original question is 26, the cyclicity would be too big. The cyclicity method wouldn't be a good idea. I would have done this question exactly as Engr2012 did.
Thanks altogether, I've just tried this approach in 2 or 3 questions and did get a right answer, what made me think that this one is the fastest approach... but I saw my mistake now.
Dear experts, do you think this is a valid method ? 3^84 has a unit digit 1, so the remainder is 1 Answer(B)
No, it is not a correct approach. You can use units digit to guide you in finding the remainder when dividing by 2, 5, or 10 for example. For example \(\frac{12}{5}\) and \(\frac{122222}{5}\) have the same remainder. The way I approach these types of remainder questions, is I first look at the divisor. If it is a small divisor that is neither 2,5, nor 10, I will choose between looking at the cyclicity of the base raised to a positive exponent divided by the divisor and binomial expansion.
For example consider finding the remainder for \(\frac{2^{86}}{7}\). Since the divisor is not 2,5, or 10, looking at the units digit wouldn't work. If I were to use the cyclicity method, I would start by listing, \(\frac{2^{1}}{7}\)yields remainder of 2
\(\frac{2^{2}}{7}\)yields remainder of 4
\(\frac{2^{3}}{7}\)yields remainder of 1
\(\frac{2^{4}}{7}\)yields remainder of 2
There is a cyclicity of 3, since 86/3 yields remainder of 2 then the remainder of \(\frac{2^{86}}{7}\), will be the same remainder of \(\frac{2^{2}}{7}\),which as remainder of 4
Then I will look at the individual remainders of each of the 2 terms when dividing by 7. For example let's say you wanted to find the remainder of \(\frac{(18*23)}{7}\). Mod(\(\frac{18}{7}\)) is 4. Mod(\(\frac{23}{7}\)) is 2. Combine 4 and 2 by multiplication because the operation in question is multiplication and then find the remainder. So the remainder of \(\frac{(4*2)}{7}\) is 1 and this is the answer.
This can be done with negative remainders too. For example let's say you wanted to find the remainder of \(\frac{(23-18)}{7}\). Combine 2 and 4 by subtraction and then find the remainder. So the remainder of \(\frac{(2-4)}{7}\) is 5. When you have a negative remainder, find the remainder first as if the numerator was positive and then subtract from the divisor. If you had positive 2 on top, the remainder would have been 2, but you have negative 2, so subtract positive 2 from 7 and you get a remainder of 5.
Back to the question. The remainder of \(\frac{(7+1)^{28}}{7}\) is 1; every term will be divisible by 7 except the last term,which is \(1^{28}.\) See Engr2012's above explanation regarding binomial expansion. The remainder of \(\frac{2^2}{7}\) is 4. Combine 1 and 4 by multiplication and then find the remainder. So the remainder of \(\frac{(1*4)}{7}\) is 4.
Since the divisor in the original question is 26, the cyclicity would be too big. The cyclicity method wouldn't be a good idea. I would have done this question exactly as Engr2012 did.
\(\frac{2^{86}}{7}\) isn't it the same using cyclicity method...? \(2^{86}/7\) has a unit's digit of 4 , so the remainder is 4
Engr2012, here we use cyclicity approach and it's valid. I just don't understand where is the limit where we can use or don't this approach ?? what-is-the-remainder-of-126493.html
No, it is not a correct approach. You can use units digit to guide you in finding the remainder when dividing by 2, 5, or 10 for example. For example \(\frac{12}{5}\) and \(\frac{122222}{5}\) have the same remainder. The way I approach these types of remainder questions, is I first look at the divisor. If it is a small divisor that is neither 2,5, nor 10, I will choose between looking at the cyclicity of the base raised to a positive exponent divided by the divisor and binomial expansion.
For example consider finding the remainder for \(\frac{2^{86}}{7}\). Since the divisor is not 2,5, or 10, looking at the units digit wouldn't work. If I were to use the cyclicity method, I would start by listing, \(\frac{2^{1}}{7}\)yields remainder of 2
\(\frac{2^{2}}{7}\)yields remainder of 4
\(\frac{2^{3}}{7}\)yields remainder of 1
\(\frac{2^{4}}{7}\)yields remainder of 2
There is a cyclicity of 3, since 86/3 yields remainder of 2 then the remainder of \(\frac{2^{86}}{7}\), will be the same remainder of \(\frac{2^{2}}{7}\),which as remainder of 4
Then I will look at the individual remainders of each of the 2 terms when dividing by 7. For example let's say you wanted to find the remainder of \(\frac{(18*23)}{7}\). Mod(\(\frac{18}{7}\)) is 4. Mod(\(\frac{23}{7}\)) is 2. Combine 4 and 2 by multiplication because the operation in question is multiplication and then find the remainder. So the remainder of \(\frac{(4*2)}{7}\) is 1 and this is the answer.
This can be done with negative remainders too. For example let's say you wanted to find the remainder of \(\frac{(23-18)}{7}\). Combine 2 and 4 by subtraction and then find the remainder. So the remainder of \(\frac{(2-4)}{7}\) is 5. When you have a negative remainder, find the remainder first as if the numerator was positive and then subtract from the divisor. If you had positive 2 on top, the remainder would have been 2, but you have negative 2, so subtract positive 2 from 7 and you get a remainder of 5.
Back to the question. The remainder of \(\frac{(7+1)^{28}}{7}\) is 1; every term will be divisible by 7 except the last term,which is \(1^{28}.\) See Engr2012's above explanation regarding binomial expansion. The remainder of \(\frac{2^2}{7}\) is 4. Combine 1 and 4 by multiplication and then find the remainder. So the remainder of \(\frac{(1*4)}{7}\) is 4.
Since the divisor in the original question is 26, the cyclicity would be too big. The cyclicity method wouldn't be a good idea. I would have done this question exactly as Engr2012 did.
\(\frac{2^{86}}{7}\) isn't it the same using cyclicity method...? \(2^{86}/7\) has a unit's digit of 4 , so the remainder is 4
Engr2012, here we use cyclicity approach and it's valid. I just don't understand where is the limit where we can use or don't this approach ?? what-is-the-remainder-of-126493.html
First off, 1 method "working" for a particular question does not mean that it is the most efficient / repeatable method. \(2^{86}/7\) luckily gave you the correct answer but you want to develop and understand a method that can be applied to all such questions. Cyclicity is not such a method.
Cyclicity is to be used for finding out what will be the unit's digit but for questions similar to \(2^{86}/7\), I will use the binomial theorem route.
Again, all terms of (63+1)^14 will have 63 (a multiple of 7) except the last one (=1^14), giving you
\(4*1^{14}\) = 4 (as the last term).
Thus the remainder when you divide 4/7=4.
Idea behind 2^6 is to find the closest multiple of 7 (such that the number = multiple of 7 + 1), alternately you could have used 2^3 as well as it will give you 8 = 7-1. Concept remains the same.
Similarly, to generalize this concept, 2^n needs to be expressed in the form of (divisor+1)^n in order to use the binomial theorem.
Re: What is the remainder when (3^84)/26
[#permalink]
Show Tags
25 Oct 2015, 06:14
Engr2012 wrote:
BrainLab wrote:
bhaskar438 wrote:
No, it is not a correct approach. You can use units digit to guide you in finding the remainder when dividing by 2, 5, or 10 for example. For example \(\frac{12}{5}\) and \(\frac{122222}{5}\) have the same remainder. The way I approach these types of remainder questions, is I first look at the divisor. If it is a small divisor that is neither 2,5, nor 10, I will choose between looking at the cyclicity of the base raised to a positive exponent divided by the divisor and binomial expansion.
For example consider finding the remainder for \(\frac{2^{86}}{7}\). Since the divisor is not 2,5, or 10, looking at the units digit wouldn't work. If I were to use the cyclicity method, I would start by listing, \(\frac{2^{1}}{7}\)yields remainder of 2
\(\frac{2^{2}}{7}\)yields remainder of 4
\(\frac{2^{3}}{7}\)yields remainder of 1
\(\frac{2^{4}}{7}\)yields remainder of 2
There is a cyclicity of 3, since 86/3 yields remainder of 2 then the remainder of \(\frac{2^{86}}{7}\), will be the same remainder of \(\frac{2^{2}}{7}\),which as remainder of 4
Then I will look at the individual remainders of each of the 2 terms when dividing by 7. For example let's say you wanted to find the remainder of \(\frac{(18*23)}{7}\). Mod(\(\frac{18}{7}\)) is 4. Mod(\(\frac{23}{7}\)) is 2. Combine 4 and 2 by multiplication because the operation in question is multiplication and then find the remainder. So the remainder of \(\frac{(4*2)}{7}\) is 1 and this is the answer.
This can be done with negative remainders too. For example let's say you wanted to find the remainder of \(\frac{(23-18)}{7}\). Combine 2 and 4 by subtraction and then find the remainder. So the remainder of \(\frac{(2-4)}{7}\) is 5. When you have a negative remainder, find the remainder first as if the numerator was positive and then subtract from the divisor. If you had positive 2 on top, the remainder would have been 2, but you have negative 2, so subtract positive 2 from 7 and you get a remainder of 5.
Back to the question. The remainder of \(\frac{(7+1)^{28}}{7}\) is 1; every term will be divisible by 7 except the last term,which is \(1^{28}.\) See Engr2012's above explanation regarding binomial expansion. The remainder of \(\frac{2^2}{7}\) is 4. Combine 1 and 4 by multiplication and then find the remainder. So the remainder of \(\frac{(1*4)}{7}\) is 4.
Since the divisor in the original question is 26, the cyclicity would be too big. The cyclicity method wouldn't be a good idea. I would have done this question exactly as Engr2012 did.
\(\frac{2^{86}}{7}\) isn't it the same using cyclicity method...? \(2^{86}/7\) has a unit's digit of 4 , so the remainder is 4
Engr2012, here we use cyclicity approach and it's valid. I just don't understand where is the limit where we can use or don't this approach ?? what-is-the-remainder-of-126493.html
First off, 1 method "working" for a particular question does not mean that it is the most efficient / repeatable method. \(2^{86}/7\) luckily gave you the correct answer but you want to develop and understand a method that can be applied to all such questions. Cyclicity is not such a method.
Cyclicity is to be used for finding out what will be the unit's digit but for questions similar to \(2^{86}/7\), I will use the binomial theorem route.
Again, all terms of (63+1)^14 will have 63 (a multiple of 7) except the last one (=1^14), giving you
\(4*1^{14}\) = 4 (as the last term).
Thus the remainder when you divide 4/7=4.
Idea behind 2^6 is to find the closest multiple of 7 (such that the number = multiple of 7 + 1), alternately you could have used 2^3 as well as it will give you 8 = 7-1. Concept remains the same.
Similarly, to generalize this concept, 2^n needs to be expressed in the form of (divisor+1)^n in order to use the binomial theorem.
Hope this helps.
Hi ENGR2012, first of all , thanks for your time. After investigating about this topic, I must say that cyclicity is a valid approach (as bhaskar438 have already stated) only if we have 2,5 or 10 as a divisor. But I'll better use binomial theorem to be 100% sure.
Hi ENGR2012, first of all , thanks for your time. After investigating about this topic, I must say that cyclicity is a valid approach (as bhaskar438 have already stated) only if we have 2,5 or 10 as a divisor. But I'll better use binomial theorem to be 100% sure.
GMAT is all about picking the best method in terms of execution and time you spend on a particular question. If you are comfortable to add the extra bit of learning that 2,5,10 maintain cyclicity then by all means do it but make sure to not experiment in the GMAT.
I never said that cyclicity is wrong. For me, binomial theorem application is more straightforward.
Pick your method and stick to it. Pattern recognition and application of a fixed method of attack are of paramount importance in GMAT.
Re: What is the remainder when (3^84)/26
[#permalink]
Show Tags
25 Oct 2015, 07:33
BrainLab wrote:
bhaskar438 wrote:
BrainLab wrote:
Dear experts, do you think this is a valid method ? 3^84 has a unit digit 1, so the remainder is 1 Answer(B)
No, it is not a correct approach. You can use units digit to guide you in finding the remainder when dividing by 2, 5, or 10 for example. For example \(\frac{12}{5}\) and \(\frac{122222}{5}\) have the same remainder. The way I approach these types of remainder questions, is I first look at the divisor. If it is a small divisor that is neither 2,5, nor 10, I will choose between looking at the cyclicity of the base raised to a positive exponent divided by the divisor and binomial expansion.
For example consider finding the remainder for \(\frac{2^{86}}{7}\). Since the divisor is not 2,5, or 10, looking at the units digit wouldn't work. If I were to use the cyclicity method, I would start by listing, \(\frac{2^{1}}{7}\)yields remainder of 2
\(\frac{2^{2}}{7}\)yields remainder of 4
\(\frac{2^{3}}{7}\)yields remainder of 1
\(\frac{2^{4}}{7}\)yields remainder of 2
There is a cyclicity of 3, since 86/3 yields remainder of 2 then the remainder of \(\frac{2^{86}}{7}\), will be the same remainder of \(\frac{2^{2}}{7}\),which as remainder of 4
Then I will look at the individual remainders of each of the 2 terms when dividing by 7. For example let's say you wanted to find the remainder of \(\frac{(18*23)}{7}\). Mod(\(\frac{18}{7}\)) is 4. Mod(\(\frac{23}{7}\)) is 2. Combine 4 and 2 by multiplication because the operation in question is multiplication and then find the remainder. So the remainder of \(\frac{(4*2)}{7}\) is 1 and this is the answer.
This can be done with negative remainders too. For example let's say you wanted to find the remainder of \(\frac{(23-18)}{7}\). Combine 2 and 4 by subtraction and then find the remainder. So the remainder of \(\frac{(2-4)}{7}\) is 5. When you have a negative remainder, find the remainder first as if the numerator was positive and then subtract from the divisor. If you had positive 2 on top, the remainder would have been 2, but you have negative 2, so subtract positive 2 from 7 and you get a remainder of 5.
Back to the question. The remainder of \(\frac{(7+1)^{28}}{7}\) is 1; every term will be divisible by 7 except the last term,which is \(1^{28}.\) See Engr2012's above explanation regarding binomial expansion. The remainder of \(\frac{2^2}{7}\) is 4. Combine 1 and 4 by multiplication and then find the remainder. So the remainder of \(\frac{(1*4)}{7}\) is 4.
Since the divisor in the original question is 26, the cyclicity would be too big. The cyclicity method wouldn't be a good idea. I would have done this question exactly as Engr2012 did.
\(\frac{2^{86}}{7}\) isn't it the same using cyclicity method...? \(2^{86}/7\) has a unit's digit of 4 , so the remainder is 4
Engr2012, here we use cyclicity approach and it's valid. I just don't understand where is the limit where we can use or don't this approach ?? what-is-the-remainder-of-126493.html
Hi Brainlab,
I was actually talking about 3 separate methods: units digit method, cycle method, and binomial expansion method. A specific units digit method for divisors 2,5,10. In the cyclicity method you are only looking at the cycle of the units digit to see when it stops repeating. You are not looking solely at the units digit to find the remainder as you would for divisors 2,5,10. In the previous question \(\frac{2^{86}}{7}\) was similar to finding the remainder for \(\frac{2^{2}}{7}\) because I found out the remainder should be the second item out of the three items in the cycle. Only use the cyclicity method when the divisor is small.
Re: What is the remainder when (3^84)/26
[#permalink]
Show Tags
25 Oct 2015, 07:42
Engr2012 wrote:
BrainLab wrote:
Hi ENGR2012, first of all , thanks for your time. After investigating about this topic, I must say that cyclicity is a valid approach (as bhaskar438 have already stated) only if we have 2,5 or 10 as a divisor. But I'll better use binomial theorem to be 100% sure.
GMAT is all about picking the best method in terms of execution and time you spend on a particular question. If you are comfortable to add the extra bit of learning that 2,5,10 maintain cyclicity then by all means do it but make sure to not experiment in the GMAT.
I never said that cyclicity is wrong. For me, binomial theorem application is more straightforward.
Pick your method and stick to it. Pattern recognition and application of a fixed method of attack are of paramount importance in GMAT.
I can't think of a better method to find the remainder for \(\frac{18^{220}}{7}\) than the method he did. Also the cyclicity method is different from units digit method (which is for divisors 2,5, or 10)
Hi ENGR2012, first of all , thanks for your time. After investigating about this topic, I must say that cyclicity is a valid approach (as bhaskar438 have already stated) only if we have 2,5 or 10 as a divisor. But I'll better use binomial theorem to be 100% sure.
GMAT is all about picking the best method in terms of execution and time you spend on a particular question. If you are comfortable to add the extra bit of learning that 2,5,10 maintain cyclicity then by all means do it but make sure to not experiment in the GMAT.
I never said that cyclicity is wrong. For me, binomial theorem application is more straightforward.
Pick your method and stick to it. Pattern recognition and application of a fixed method of attack are of paramount importance in GMAT.
I can't think of a better method to find the remainder for \(\frac{18^{220}}{7}\) than the method he did. Also the cyclicity method is different from units digit method (which is for divisors 2,5, or 10)
I dont think such a question will be asked in GMAT (not right now, even Bunuel mentions this in the first line of his solution) as I have not seen a single official/GMAT question that can only be solved by binomial theorem application. Almost always there were other ways to solve such a question. It is not about how many "difficult" questions you solve, there can be hundreds of them but the more important part of GMAT quant is to understand the tactics to solve 'problem groups'.
Re: What is the remainder when (3^84)/26
[#permalink]
Show Tags
25 Oct 2015, 09:04
Engr2012 wrote:
I dont think such a question will be asked in GMAT (not right now, even Bunuel mentions this in the first line of his solution) as I have not seen a single official/GMAT question that can only be solved by binomial theorem application. Almost always there were other ways to solve such a question. It is not about how many "difficult" questions you solve, there can be hundreds of them but the more important part of GMAT quant is to understand the tactics to solve 'problem groups'.
I completely agree. I just like having many different methods in my arsenal.
Re: What is the remainder when (3^84)/26
[#permalink]
Show Tags
26 Nov 2015, 04:11
3
Such Questions Usually have a sort of Repetition in them :
3^1 = 3/26 gives remainder 3 3^2 = 9/26 gives remainder 9 3^3 = 27/26 gives remainder 1 3^4 = 81/26 again gives remainder 3 3^5 = 243/26 again gives remainder 9 and so on.
Its following a repetion of 3...9...1 or we can say they are repeating in multiples of 3. So, we can simply divide 84 by 3 which is completely divisible.
=> As per the repetition the remainder should be 1.
Re: What is the remainder when (3^84)/26
[#permalink]
Show Tags
28 Jun 2017, 09:53
Bunuel wrote:
What is the remainder when \(\frac{(3^{84})}{26}\)
(A) 0 (B) 1 (C) 2 (D) 24 (E) 25
Hi Bunuel,
Will it be possible for you to provide an approach to this type of questions? or could you guide me to a post where you have already posted an explanation to such questions? I read the entire thread and I was unable to understand the approaches and frankly it seemed like a really time consuming approaches. Kindly help,
What is the remainder when \(\frac{(3^{84})}{26}\)
(A) 0 (B) 1 (C) 2 (D) 24 (E) 25
Hi Bunuel,
Will it be possible for you to provide an approach to this type of questions? or could you guide me to a post where you have already posted an explanation to such questions? I read the entire thread and I was unable to understand the approaches and frankly it seemed like a really time consuming approaches. Kindly help,