GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 25 Sep 2018, 04:11

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

After driving to a riverfront parking lot, Bob plans to run

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
avatar
Joined: 30 Mar 2013
Posts: 112
GMAT ToolKit User
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 22 Oct 2014, 11:33
I'm sorry but I see as 8 beign the speed, and i cant see why we don't use s=d/t...which is 8=d/50...
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49439
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 22 Oct 2014, 11:46
Manager
Manager
avatar
Joined: 30 Mar 2013
Posts: 112
GMAT ToolKit User
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 22 Oct 2014, 11:50
1/8. I got it! we always write speed as miles/ hr or minute, and not the other way around.
Thanks Bunuel!!
Intern
Intern
avatar
Joined: 04 Feb 2014
Posts: 13
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 19 Feb 2015, 20:37
Im confused I thought 50 min was added not total time
Manager
Manager
avatar
Joined: 29 Jul 2015
Posts: 159
GMAT ToolKit User
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 20 Sep 2015, 11:10
Walkabout wrote:
After driving to a riverfront parking lot, Bob plans to run south along the river, turn around, and return to the parking lot, running north along the same path. After running 3.25 miles south, he decides to run for only 50 minutes more. If Bob runs at a constant rate of 8 minutes per mile, how many miles farther south can he run and still be able to return to the parking lot in 50 minutes?

(A) 1.5
(B) 2.25
(C) 3.0
(D) 3.25
(E) 4.75


Bob runs at a rate of 8 minutes per mile. So, in 1 hour he will run 60/8 = 7.5 miles
So his speed is 7.5 miles/hr
Let x be the distance he further runs south before turning back.
So the total distance which he must cover in 50 minutes or 50/60 hour is x+x+3.25 or 2x+3.25
Time = Distance / Speed

\(\frac{50}{60} = \frac{2x+3.25}{7.5}\)

x=1.5

Answer:- A
Intern
Intern
avatar
B
Joined: 20 Sep 2011
Posts: 18
Concentration: Operations, International Business
Schools: Ross '17, ISB '16, NUS '17
GMAT 1: 640 Q40 V35
GMAT ToolKit User Reviews Badge
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 20 Sep 2015, 23:49
Walkabout wrote:
After driving to a riverfront parking lot, Bob plans to run south along the river, turn around, and return to the parking lot, running north along the same path. After running 3.25 miles south, he decides to run for only 50 minutes more. If Bob runs at a constant rate of 8 minutes per mile, how many miles farther south can he run and still be able to return to the parking lot in 50 minutes?

(A) 1.5
(B) 2.25
(C) 3.0
(D) 3.25
(E) 4.75



My answer : 1.5

Total distance Bob runs = 3.25 miles south + remaining south + remaining north + 3.25 miles north
Speed = 8 mins per mile.
Miles he can cover in 50 mins = 50/8 = 6.25 miles.
=> remaining south + remaining north + 3.25 miles north = 6.25 miles
Now, remaining distance should be equally divided between north and south
= > 2 remaining distance = 6.25 -3.25
=> remaining distance =3/2 = 1.5 km.
VP
VP
avatar
P
Joined: 07 Dec 2014
Posts: 1090
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 22 Sep 2015, 14:14
rate=1/8 mile per minute
time=50 minutes
distance=2x+3.25 miles
x=1.5 miles
Manager
Manager
User avatar
Joined: 04 May 2015
Posts: 71
Concentration: Strategy, Operations
WE: Operations (Military & Defense)
Premium Member
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 05 Oct 2015, 21:28
Walkabout wrote:
After driving to a riverfront parking lot, Bob plans to run south along the river, turn around, and return to the parking lot, running north along the same path. After running 3.25 miles south, he decides to run for only 50 minutes more. If Bob runs at a constant rate of 8 minutes per mile, how many miles farther south can he run and still be able to return to the parking lot in 50 minutes?

(A) 1.5
(B) 2.25
(C) 3.0
(D) 3.25
(E) 4.75


I saw that there was a lot of people asking questions about this one and a lot of them were issues with trying to visualize what's actually happening in the scenario. When I was working through through the 2015 OG I completed this question and found it pretty straight forward when I drew the below picture. Maybe someone will find it useful one day.
Attachments

File comment: Sorry for the messy writing :(
gmat pic.png
gmat pic.png [ 1.73 MiB | Viewed 1561 times ]


_________________

If you found my post useful, please consider throwing me a Kudos... Every bit helps :)

Intern
Intern
avatar
Joined: 14 Oct 2014
Posts: 3
GMAT ToolKit User
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 21 Dec 2015, 19:27
In 50 minutes, he can do the following:

(3.25+x)(8) = 50

26+8x = 50
8x = 24
x = 3 ----> He can run 3 more miles. Since he has to run up and back, he can run 1.5 more miles South before he has to turn back.
Board of Directors
User avatar
P
Joined: 17 Jul 2014
Posts: 2682
Location: United States (IL)
Concentration: Finance, Economics
GMAT 1: 650 Q49 V30
GPA: 3.92
WE: General Management (Transportation)
GMAT ToolKit User Premium Member Reviews Badge
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 25 Dec 2015, 11:23
good question :)
with lots of traps :)

ok, so he needs to run 50 more minutes all together - that means few more miles south then return all the way back.
he runs 1 mile/8 minutes. which means that in 50 minutes he will run for 6.25 miles.
so the total distance he wants to cover is 9.50 miles. since the distance to north needs to be the same as distance to south, it means that in one direction, he needs to run 4.75 miles. since he already covered 3.25, he needs to run additional 1.50 miles before returning back.
Manager
Manager
avatar
S
Joined: 04 Apr 2015
Posts: 186
Reviews Badge
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 14 Mar 2016, 10:54
another method
he ran for 3.25 miles at rate of 8 min /miles so he ran for 3.25 x 8=26 mins
so the next decision in which he will run only 50 mins must have 26 mins spare for 3.25 mile return, so he is left with 24 mins with him to run ahead and come back
now
at rate of 8 given the distance he can travel in 24 mins is 24/8 =3 miles
but it must be split in equal halves so 2d=3 there fore max distance of 1.5 miles
Target Test Prep Representative
User avatar
G
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 3528
Location: United States (CA)
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 04 May 2016, 10:07
Walkabout wrote:
After driving to a riverfront parking lot, Bob plans to run south along the river, turn around, and return to the parking lot, running north along the same path. After running 3.25 miles south, he decides to run for only 50 minutes more. If Bob runs at a constant rate of 8 minutes per mile, how many miles farther south can he run and still be able to return to the parking lot in 50 minutes?

(A) 1.5
(B) 2.25
(C) 3.0
(D) 3.25
(E) 4.75


Solution:

We are given that Bob plans to run south along the river, turn around, and return to where he started. We can draw this out.

Image

We know that his run south (from the parking lot) and his run north (back to the parking lot) are equal in distance. We will use this information later in the solution.

We are also given that Bob’s rate is 8 minutes per mile, or, in other words, (since Rate = Distance/Time) his rate is 1 mile per 8 minutes or 1/8.

We are told that Bob had already run 3.25 miles south, and he wants to run for 50 minutes more. Thus, we calculate how far Bob will go in the remaining 50 minutes.

Distance = Rate x Time

Distance = 1/8 x 50

Distance = 50/8 = 25/4 = 6.25 miles

Thus, we know that Bob’s total running distance will be 6.25 + 3.25 = 9.5 miles. Because we know the distance is THE SAME both ways, we know that each leg of his trip is 9.5/2 = 4.75 miles. Since Bob has ALREADY RUN 3.25 miles south, he can run 4.75 – 3.25 = 1.5 miles more. At that point he will have to turn around and head back north to the parking lot.

Answer A
_________________

Scott Woodbury-Stewart
Founder and CEO

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Intern
Intern
avatar
Joined: 04 May 2015
Posts: 4
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 27 May 2016, 08:19
An easy shortcut:
let the distance from after running 3.25 till reaching south point =x.
let d1=3.25, let d2=x+x+3.25=2x+3.25 since distance from south to north is the same 3.25+x

then we need to change the rate from 8 min/mile to r =mile /min using proportion:
8/1= 1/r >> 8r=1> r=1/8 mile/min

since rate is constant= 1/8 always and t2=50 min
then d2=r2*t2 =1/8*50=6.25.
d2= 6.25=2x+3.25
=2x=3 >> x=3/2=1.5 mile
Director
Director
User avatar
B
Joined: 17 Dec 2012
Posts: 636
Location: India
After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 29 May 2017, 04:08
Walkabout wrote:
After driving to a riverfront parking lot, Bob plans to run south along the river, turn around, and return to the parking lot, running north along the same path. After running 3.25 miles south, he decides to run for only 50 minutes more. If Bob runs at a constant rate of 8 minutes per mile, how many miles farther south can he run and still be able to return to the parking lot in 50 minutes?

(A) 1.5
(B) 2.25
(C) 3.0
(D) 3.25
(E) 4.75


1. Converting speed to miles / minute, speed =1/8 miles/minute
2. Miles run = 3.25
3. To cover 3.25 miles in the return he needs 3.25/(1/8) minutes = 26 min
4. In the remaining 24 minutes, down south is 12 min and up north is 12 minutes
5. So down south further, he can run 12*1/8 = 1.5 miles
_________________

Srinivasan Vaidyaraman
Sravna Holistic Solutions
http://www.sravnatestprep.com

Holistic and Systematic Approach

Manager
Manager
avatar
G
Joined: 12 Jun 2016
Posts: 218
Location: India
Concentration: Technology, Leadership
WE: Sales (Telecommunications)
GMAT ToolKit User
After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 15 Jul 2017, 23:02
I found using a table to keep track of information a bit helpful here. Though, I took more time to solve ( = Need Practice :( )

See the table below.

Final Answer = 1.5

Answer choice A
Attachments

OG13_PS_79.png
OG13_PS_79.png [ 38.24 KiB | Viewed 839 times ]


_________________

My Best is yet to come!

Senior Manager
Senior Manager
User avatar
B
Joined: 28 Jun 2015
Posts: 294
Concentration: Finance
GPA: 3.5
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 16 Jul 2017, 00:31
Speed = 1 mile per 8 mins = 7.5 mph.
Distance that can be run in 50 mins = 50*7.5/60 = 6.25 miles.

He can run 6.25 miles in the next 50 minutes, which includes distance that he would cover further in south and running back to the parking lot. Since he has already covered 3.25 miles south, he needs to make time from the 50 mins to cover that, additionally, he can run 1.5 miles. Ans - A.
_________________

I used to think the brain was the most important organ. Then I thought, look what’s telling me that.

Manager
Manager
avatar
G
Joined: 07 Jan 2015
Posts: 67
Location: United States
GPA: 3.4
WE: Engineering (Manufacturing)
Reviews Badge
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 24 Dec 2017, 18:52
Can you use substitution for this question or the fast way is to solve it?
Intern
Intern
avatar
B
Joined: 17 Jul 2016
Posts: 35
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 08 Jan 2018, 18:59
at a rate of 8 mins per mile, it takes him 26 minutes to travel 3.25 miles. He has to travel for 50 more minutes. So his total travel time
is 50+26=76 minutes. So half the way takes 38 minutes. He can travel for 12 more minutes one way. at a rate of 8 mins per mile that would be 1.5 miles.
Intern
Intern
User avatar
B
Joined: 18 Jul 2015
Posts: 17
GMAT 1: 530 Q43 V20
WE: Analyst (Consumer Products)
GMAT ToolKit User CAT Tests
After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 11 Feb 2018, 04:23
Bob has \(50\) more minutes to cover \(3.25\) miles plus some distance, lets call it \(x\), twice (twice - because Bob needs to travel in both directions)
At the rate of \(1/8\) miles per minute it would take Bob \(26\) minutes to cover the \(3.25\) miles back, hence subtracting that from \(50\) leaves \(24\) minutes with Bob to cover the distance \(x\) twice.

Hence at \(1/8 = 2x/24\)(Speed = Distance/Time) gives \(x = 3/2 = 1.5\) miles.

Correct Answer: Option \(A\)
Intern
Intern
avatar
Joined: 06 Mar 2017
Posts: 1
Re: After driving to a riverfront parking lot, Bob plans to run  [#permalink]

Show Tags

New post 11 Feb 2018, 08:30
khairilthegreat wrote:
Bob has only 50 minutes to complete the whole run. With rate of 8 minutes/mile the distance he can cover is 50/8 mile.

We can picture the path as follow

Running south
<-------3.25 miles--------><---- d = ? ----->

Running north back to origin
<-------3.25 miles--------><------- d ------->

From this we can conclude if he want to go back to his first point the distance would be d + d + 3.25.

Because he only has 50/8 mile left, we can make equation as follows d+d+3.25 = 50/8; 2d+3.25 = 6.25 --> d=1.5
GMAT Club Bot
Re: After driving to a riverfront parking lot, Bob plans to run &nbs [#permalink] 11 Feb 2018, 08:30

Go to page   Previous    1   2   3    Next  [ 41 posts ] 

Display posts from previous: Sort by

After driving to a riverfront parking lot, Bob plans to run

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.