GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 12 Dec 2018, 20:05

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
  • The winning strategy for 700+ on the GMAT

     December 13, 2018

     December 13, 2018

     08:00 AM PST

     09:00 AM PST

    What people who reach the high 700's do differently? We're going to share insights, tips and strategies from data we collected on over 50,000 students who used examPAL.
  • GMATbuster's Weekly GMAT Quant Quiz, Tomorrow, Saturday at 9 AM PST

     December 14, 2018

     December 14, 2018

     09:00 AM PST

     10:00 AM PST

    10 Questions will be posted on the forum and we will post a reply in this Topic with a link to each question. There are prizes for the winners.

Four concentric circles share the same center. The smallest circle has

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
avatar
Joined: 11 Jul 2010
Posts: 193
GMAT ToolKit User
Four concentric circles share the same center. The smallest circle has  [#permalink]

Show Tags

New post Updated on: 24 Oct 2014, 01:40
5
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

73% (02:12) correct 27% (02:23) wrong based on 97 sessions

HideShow timer Statistics

Four concentric circles share the same center. The smallest circle has a radius of 1 inch. For \(n\) greater than 1, the area of the \(n\)th smallest circle in square inches, \(A_n\), is given by \(A_n = A_{n-1} + (2n - 1)\pi\).

What is the sum of the areas of the four circles, divided by the sum of their circumferences, in inches?


A. \(1\)
B. \(1\frac{1}{2}\)
C. \(2\)
D. \(2\frac{1}{2}\)
E. \(3\)

S98-11

Originally posted by gmat1011 on 16 Oct 2010, 06:13.
Last edited by Bunuel on 24 Oct 2014, 01:40, edited 1 time in total.
Renamed the topic, edited the question and added the OA.
Retired Moderator
User avatar
Joined: 02 Sep 2010
Posts: 765
Location: London
GMAT ToolKit User Reviews Badge
Re: Four concentric circles share the same center. The smallest circle has  [#permalink]

Show Tags

New post 16 Oct 2010, 15:03
2
gmat1011 wrote:
Four concentric circles share the same center. The smallest circle has a radius of 1 inch. For n greater than 1, the area of the n th smallest circle in square inches, A_n , is given by A_n = A_n-1 + (2n - 1)

What is the sum of the areas of the four circles, divided by the sum of their circumferences, in inches?

(C) 2008 GMAT Club / MGMAT challenge

* 1
* 1 1/2
* 2
* 2 1/2
* 3


I think this should say \(A_n=A_{n-1} + (2n-1)\pi\)
\(A_1 = \pi, r_1=1\)
\(A_2=A_1+3\pi=4\pi, r_2=2\)
\(A_3=A_2+5\pi=9\pi, r_3=3\)
\(A_4=A_3+7\pi=16\pi, r_4=4\)

The sum of circumferences is \(S=\pi(2+4+6+8)=20\pi\)
The sum of areas is \(A=\pi(1+4+9+16)=30\pi\)

Hence ratio is 1.5

Answer B
_________________

Math write-ups
1) Algebra-101 2) Sequences 3) Set combinatorics 4) 3-D geometry

My GMAT story

GMAT Club Premium Membership - big benefits and savings

Manager
Manager
avatar
Joined: 29 Sep 2008
Posts: 95
Re: Four concentric circles share the same center. The smallest circle has  [#permalink]

Show Tags

New post 16 Oct 2010, 20:59
shrouded1 pointed out correctly otherwise it would be difficult to calculate the radius.it would require a lot more calculation
Manager
Manager
avatar
Joined: 11 Jul 2010
Posts: 193
GMAT ToolKit User
Re: Four concentric circles share the same center. The smallest circle has  [#permalink]

Show Tags

New post 16 Oct 2010, 21:20
Thanks - yeah you guys are right... but thats exactly how the question was worded in gmat club tests

there was no pie... it only makes sense if there is a pie and reading the explanation again the answer seems to take that into account. The question needs re-wording... thanks.
Manager
Manager
User avatar
Joined: 08 Sep 2010
Posts: 174
Location: India
WE 1: 6 Year, Telecom(GSM)
Re: Four concentric circles share the same center. The smallest circle has  [#permalink]

Show Tags

New post 17 Oct 2010, 07:29
mrinal2100 wrote:
shrouded1 pointed out correctly otherwise it would be difficult to calculate the radius.it would require a lot more calculation



With this wording it was almost impossible ...yesterday i tried 1 hour for this question and at last i had to leave it out of frustation.I thought i was missing something somewhere in this question.
Manager
Manager
avatar
Joined: 11 Jul 2010
Posts: 193
GMAT ToolKit User
Re: Four concentric circles share the same center. The smallest circle has  [#permalink]

Show Tags

New post 17 Oct 2010, 09:02
sorry there - i feel your pain!

if it makes any difference I felt the same way. thats how the question was worded in the first place.
Manager
Manager
avatar
Joined: 26 Mar 2010
Posts: 94
Re: Four concentric circles share the same center. The smallest circle has  [#permalink]

Show Tags

New post 18 Oct 2010, 19:56
shrouded1 wrote:
gmat1011 wrote:
Four concentric circles share the same center. The smallest circle has a radius of 1 inch. For n greater than 1, the area of the n th smallest circle in square inches, A_n , is given by A_n = A_n-1 + (2n - 1)

What is the sum of the areas of the four circles, divided by the sum of their circumferences, in inches?

(C) 2008 GMAT Club / MGMAT challenge

* 1
* 1 1/2
* 2
* 2 1/2
* 3


I think this should say \(A_n=A_{n-1} + (2n-1)\pi\)
\(A_1 = \pi, r_1=1\)
\(A_2=A_1+3\pi=4\pi, r_2=2\)
\(A_3=A_2+5\pi=9\pi, r_3=3\)
\(A_4=A_3+7\pi=16\pi, r_4=4\)

The sum of circumferences is \(S=\pi(2+4+6+8)=20\pi\)
The sum of areas is \(A=\pi(1+4+9+16)=30\pi\)

Hence ratio is 1.5

Answer B




Hi Pls explain how come r2,23,r4 values are 2,3,4 respectively.I can understand that r1=1 though.
Manager
Manager
User avatar
Joined: 08 Sep 2010
Posts: 174
Location: India
WE 1: 6 Year, Telecom(GSM)
Re: Four concentric circles share the same center. The smallest circle has  [#permalink]

Show Tags

New post 18 Oct 2010, 20:55
utin wrote:
shrouded1 wrote:
gmat1011 wrote:
Four concentric circles share the same center. The smallest circle has a radius of 1 inch. For n greater than 1, the area of the n th smallest circle in square inches, A_n , is given by A_n = A_n-1 + (2n - 1)

What is the sum of the areas of the four circles, divided by the sum of their circumferences, in inches?

(C) 2008 GMAT Club / MGMAT challenge

* 1
* 1 1/2
* 2
* 2 1/2
* 3


I think this should say \(A_n=A_{n-1} + (2n-1)\pi\)
\(A_1 = \pi, r_1=1\)
\(A_2=A_1+3\pi=4\pi, r_2=2\)
\(A_3=A_2+5\pi=9\pi, r_3=3\)
\(A_4=A_3+7\pi=16\pi, r_4=4\)

The sum of circumferences is \(S=\pi(2+4+6+8)=20\pi\)
The sum of areas is \(A=\pi(1+4+9+16)=30\pi\)

Hence ratio is 1.5

Answer B




Hi Pls explain how come r2,23,r4 values are 2,3,4 respectively.I can understand that r1=1 though.



From given equation we are getting A2= 4 Pie
A2 is the area of 2nd circle,From formula for the area of a circle,
Pie .(r2)^2 = 4 Pie
hence r2=2
Same way for r3, and r4 .

If it helped u in some way consider giving KUDOS.
Manager
Manager
avatar
Joined: 22 Sep 2010
Posts: 77
Re: Four concentric circles share the same center. The smallest circle has  [#permalink]

Show Tags

New post 19 Oct 2010, 04:42
thanks for your explanation .....
Senior Manager
Senior Manager
avatar
Joined: 18 Aug 2009
Posts: 358
Schools: UT at Austin, Indiana State University, UC at Berkeley
WE 1: 5.5
WE 2: 5.5
WE 3: 6.0
Re: Four concentric circles share the same center. The smallest circle has  [#permalink]

Show Tags

New post 12 May 2011, 03:08
Share your frustration guys, nowhere in the question stem the pie is mentioned. So, i guess, whoever wrote this question forgot to put it there. It needs to have pie for the problem to be solved...
_________________

Never give up,,,

VP
VP
avatar
Status: There is always something new !!
Affiliations: PMI,QAI Global,eXampleCG
Joined: 08 May 2009
Posts: 1033
Re: Four concentric circles share the same center. The smallest circle has  [#permalink]

Show Tags

New post 12 May 2011, 03:24
ratio = 30pi/20pi

1.5
Intern
Intern
avatar
Joined: 06 Dec 2010
Posts: 16
Re: Four concentric circles share the same center. The smallest circle has  [#permalink]

Show Tags

New post 29 Dec 2011, 10:10
I hate this question, while doing the MGMAT challenge, I wasted 4-5 minutes on it unknowningly, threw away my whole game!!!!!
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51121
Re: Four concentric circles share the same center. The smallest circle has  [#permalink]

Show Tags

New post 24 Oct 2014, 01:41
1
2
Official Solution:

Four concentric circles share the same center. The smallest circle has a radius of 1 inch. For \(n\) greater than 1, the area of the \(n\)th smallest circle in square inches, \(A_n\), is given by \(A_n = A_{n-1} + (2n - 1)\pi\).

What is the sum of the areas of the four circles, divided by the sum of their circumferences, in inches?


A. \(1\)
B. \(1\frac{1}{2}\)
C. \(2\)
D. \(2\frac{1}{2}\)
E. \(3\)

First, we figure out the area of the smallest circle. \(A_1 = \pi r^2 = \pi 1^2 = \pi\).

Now, we find the area of the second smallest circle \((n = 2)\). \(A_2 = A_1 + (2(2) - 1) \pi = \pi + 3 \pi = 4 \pi\). This means that the radius of the second smallest circle is 2 (since the area is \(\pi r^2\)).

The third smallest circle has area \(A_3 = A_2 + (2(3) - 1) \pi = 4 \pi + 5 \pi = 9 \pi\). This means that the radius of this circle is 3.

Finally, the fourth smallest circle (that is, the largest circle) has area \(A_4 = A_3 + (2(4) - 1) \pi = 9 \pi + 7 \pi = 16 \pi\). This means that the radius of this circle is 4.

The sum of all the areas is \(\pi + 4\pi + 9\pi + 16\pi = 30\pi\).

The sum of all the circumferences is \(2\pi\) times the sum of all the radii. The sum of all the radii is \(1 + 2 + 3 + 4 = 10\), so the circumferences sum up to \(20\pi\).

Thus, the sum of all the areas, divided by the sum of all the circumferences, is \(\frac{30\pi}{20\pi} = 1\frac{1}{2}\).


Answer: B
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 9143
Premium Member
Re: Four concentric circles share the same center. The smallest circle has  [#permalink]

Show Tags

New post 28 Nov 2018, 23:25
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

GMAT Club Bot
Re: Four concentric circles share the same center. The smallest circle has &nbs [#permalink] 28 Nov 2018, 23:25
Display posts from previous: Sort by

Four concentric circles share the same center. The smallest circle has

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.