GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 31 May 2020, 02:42 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is

Author Message
TAGS:

### Hide Tags

Director  V
Joined: 25 Dec 2018
Posts: 620
Location: India
Concentration: General Management, Finance
GMAT Date: 02-18-2019
GPA: 3.4
WE: Engineering (Consulting)
Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is  [#permalink]

### Show Tags

1
10 00:00

Difficulty:   55% (hard)

Question Stats: 67% (02:38) correct 33% (02:36) wrong based on 154 sessions

### HideShow timer Statistics

Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is the value of a + b + c + d?

A) -1
B) −(10/3)
C) 12
D) 6
E) -2
Intern  B
Joined: 07 Apr 2018
Posts: 4
Re: Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is  [#permalink]

### Show Tags

6
1
a+1=a+b+c+d+5
b+2=a+b+c+d+5
c+3=a+b+c+d+5
d+4=a+b+c+d+5

Adding all the equations we get:
a+b+c+d+10=4(a+b+c+d)+20

Solving for (a+b+c+d) we get:

a+b+c+d=(-10/3)

Posted from my mobile device
##### General Discussion
Intern  B
Joined: 13 Sep 2018
Posts: 21
Location: India
Mission : 750
Re: Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is  [#permalink]

### Show Tags

1
1

Regards

K.y.Shrenik Bimbsar
Senior PS Moderator D
Status: It always seems impossible until it's done.
Joined: 16 Sep 2016
Posts: 719
GMAT 1: 740 Q50 V40 GMAT 2: 770 Q51 V42 Re: Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is  [#permalink]

### Show Tags

1
Hi ShrenikBimbsar,

When so many variables are present the first order of business should be to convert everything into a single variable. This is easily possible in this case as multiple equations are given.

It comes out that,
b = a-1 , c= a-2 & d= a-3

On substituting the above and converting the everything into a it comes out that a = 2/3

And a+b+c+d = 4a - 6

Hope it helps.

ShrenikBimbsar wrote:

Regards

K.y.Shrenik Bimbsar

Posted from my mobile device
_________________
Regards,

“Do. Or do not. There is no try.” - Yoda (The Empire Strikes Back)
Intern  B
Joined: 13 Sep 2018
Posts: 21
Location: India
Mission : 750
Re: Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is  [#permalink]

### Show Tags

1
Thanks

Regards
K.y.Shrenik Bimbsar
Intern  B
Joined: 13 Sep 2018
Posts: 21
Location: India
Mission : 750
Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is  [#permalink]

### Show Tags

1
Hi ShrenikBimbsar,

When so many variables are present the first order of business should be to convert everything into a single variable. This is easily possible in this case as multiple equations are given.

It comes out that,
b = a-1 , c= a-2 & d= a-3

On substituting the above and converting the everything into a it comes out that a = 2/3

And a+b+c+d = 4a - 6

Hope it helps.

ShrenikBimbsar wrote:

Regards

K.y.Shrenik Bimbsar

Posted from my mobile device

Thanks

Regards
K.y.Shrenik Bimbsar
Senior SC Moderator V
Joined: 22 May 2016
Posts: 3862
Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is  [#permalink]

### Show Tags

1
mangamma wrote:
Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is the value of a + b + c + d?

A) -1
B) −(10/3)
C) 12
D) 6
E) -2

You do not have to solve this problem all the way.

(1) Express three of the variables in terms of one other.
Use $$a$$ or $$d$$ for the sake of visual simplicity; both are on one end of the first string of equalitites.

$$d+4=c+3$$
$$c=(d+1)$$

$$d+4=b+2$$
$$b=(d+2)$$

$$d+4=a+1$$
$$a=(d+3)$$

(2) Solve for $$d$$ using the final equality.
Substitute for $$a, b,$$ and $$c$$
$$(d+4)=a+b+c+d+5$$
$$d+4=d+3+d+2+d+1+d+5$$
$$d+4=4d+11$$
$$-7=3d$$
$$3d=-7$$
$$d=-\frac{7}{3}$$

Stop. The answer must be a fraction with a denominator of 3.
If we add an integer to a fraction, the answer is a fraction with the same denominator.

Only one option has a denominator of 3.

Why stop?

$$a, b,$$ and $$c$$ all have values that equal
$$d$$(a fraction) + an integer

Test: If we add $$1$$ to $$-\frac{7}{3}$$, then $$1$$ must be changed to $$\frac{3}{3}$$

$$c=(d+1)$$
$$c=(-\frac{7}{3})+(\frac{3}{3})$$
$$c=-\frac{4}{3}$$
$$c$$ = another fraction with a denominator of 3.
$$a$$ and $$b$$ will also be fractions with a denominator of 3.
-- The sum of all four variables will be a fraction with a denominator of 3.
-- Only one option has a denominator of 3.

(3) if you are not sure, do all of the arithmetic

Find each value

$$a=(d+3)$$
$$a=(-\frac{7}{3})+(\frac{9}{3})$$
$$a=\frac{2}{3}$$

$$b=(d+2)$$
$$b=(-\frac{7}{3})+(\frac{6}{3})$$
$$b=-\frac{1}{3}$$

From above, $$c=-\frac{4}{3}$$

$$a+b+c+d=$$

$$\frac{2}{3}+((-\frac{1}{3})+(-\frac{4}{3})+(-\frac{7}{3}))=$$

$$\frac{2}{3}+(-\frac{12}{3})=(\frac{2}{3}-\frac{12}{3})=-\frac{10}{3}$$

_________________
Visit SC Butler, here! Get two SC questions to practice, whose links you can find by date.

Our lives begin to end the day we become silent about things that matter. -- Dr. Martin Luther King, Jr.
Veritas Prep GMAT Instructor V
Joined: 16 Oct 2010
Posts: 10477
Location: Pune, India
Re: Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is  [#permalink]

### Show Tags

1
mangamma wrote:
Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is the value of a + b + c + d?

A) -1
B) −(10/3)
C) 12
D) 6
E) -2

So this is what I observed:

a + 1 = b + 2 = c + 3 = d + 4
This means the values of the variables are reducing by 1 as we move to the right. So b is 1 less than a. c is 1 less than b and so on.
So a, b, c and d could be something like 4, 3, 2, 1 respectively.

d + 4 = a + b + c + d + 5
a + b + c + d = d - 1

So (a + b + c + d) is further 1 less than d so taking the above example, it will go down one step further and be 0.
Hence, a, b, c, d, a+b+c+d are consecutive numbers in decreasing order.

Now this is not possible if a, b, c and d are all positive numbers since their sum will be greater than individual numbers.
So a+b+c+d cannot be 6 or 12.

If a+b+c+d = -1, then d = 0, c = 1, b = 2 and a = 3
Does not satisfy.

If a+b+c+d = -2, then d = -1, c = 0, b = 1 and a = 2
Does not satisfy.

If a+b+c+d = -(10/3), then d = -7/3, c = -4/3, b = -1/3 and a = 2/3
Satisfies.

_________________
Karishma
Veritas Prep GMAT Instructor

Intern  Joined: 08 Jan 2019
Posts: 1
Re: Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is  [#permalink]

### Show Tags

1
a+1 = b+2
=> b = a-1 ——— (1)
a+1 = c+3
=> c = a-2 ——— (2)
a+1 = d+4
=> d = a-3 ——— (3)

a+1 = a+b+c+d+5
=> b+c+d = -4 ——— (4)

(1)+(2)+(3)
=> b+c+d = 3a-6 ——— (5)

From (4) and (5)
3a-6 = -4
=> a = 2/3 ——— (6)

From (4) and (6)
a+b+c+d = 2/3 - 4
=> -10/3

Senior Manager  G
Joined: 25 Feb 2019
Posts: 331
Re: Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is  [#permalink]

### Show Tags

1
mangamma wrote:
Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is the value of a + b + c + d?

A) -1
B) −(10/3)
C) 12
D) 6
E) -2

I have attached the solution.

All are equal, let us assume that all are equal to K (any constant)

we can find the value of K by solving equation in the picture

amd then find the value of required expression

Posted from my mobile device
Attachments

File comment: Solution IMG_20190312_220112.jpg [ 1.23 MiB | Viewed 2699 times ]

Intern  B
Joined: 10 Jul 2017
Posts: 16
Re: Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is  [#permalink]

### Show Tags

1
mangamma wrote:
Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is the value of a + b + c + d?

A) -1
B) −(10/3)
C) 12
D) 6
E) -2

So this is what I observed:

a + 1 = b + 2 = c + 3 = d + 4
This means the values of the variables are reducing by 1 as we move to the right. So b is 1 less than a. c is 1 less than b and so on.
So a, b, c and d could be something like 4, 3, 2, 1 respectively.

d + 4 = a + b + c + d + 5
a + b + c + d = d - 1

So (a + b + c + d) is further 1 less than d so taking the above example, it will go down one step further and be 0.
Hence, a, b, c, d, a+b+c+d are consecutive numbers in decreasing order.

Now this is not possible if a, b, c and d are all positive numbers since their sum will be greater than individual numbers.
So a+b+c+d cannot be 6 or 12.

If a+b+c+d = -1, then d = 0, c = 1, b = 2 and a = 3
Does not satisfy.

If a+b+c+d = -2, then d = -1, c = 0, b = 1 and a = 2
Does not satisfy.

If a+b+c+d = -(10/3), then d = -7/3, c = -4/3, b = -1/3 and a = 2/3
Satisfies.

I have taken another approach, what will be your suggestion?

Attachments 20190322_170735.jpg [ 2.11 MiB | Viewed 2417 times ]

Senior Manager  D
Joined: 12 Dec 2015
Posts: 496
Re: Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is  [#permalink]

### Show Tags

Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is the value of a + b + c + d?

A) -1
B) −(10/3) --> correct
C) 12
D) 6
E) -2

Solution:
a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5 = k i.e let say x = a + b + c + d, x+5 =k ---(i)
=>k + k + k + k + k = 5k
(a + 1)+(b + 2)+(c + 3)+(d + 4)+(a + b + c + d + 5) = 5k = 5*(x+5) from (i)
=> x + 1+2+3+4+ x + 5 = 5x+25
=> 2x+15 = 5x+25
=> 3x = -10
=> x = -10/3 Re: Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is   [#permalink] 26 Dec 2019, 08:02

# Given a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5, then what is  