GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 17 Oct 2018, 19:56

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If a, b, and c are positive integers and a/6+b/5 =c/30, is c divisibl

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Senior SC Moderator
User avatar
V
Joined: 14 Nov 2016
Posts: 1315
Location: Malaysia
GMAT ToolKit User Premium Member CAT Tests
If a, b, and c are positive integers and a/6+b/5 =c/30, is c divisibl  [#permalink]

Show Tags

New post 01 May 2017, 05:59
7
00:00
A
B
C
D
E

Difficulty:

  25% (medium)

Question Stats:

73% (01:28) correct 27% (01:45) wrong based on 174 sessions

HideShow timer Statistics

If a, b, and c are positive integers and \(\frac{a}{6} + \frac{b}{5} = \frac{c}{30}\), is c divisible by 5?

(1) b is divisible by 5.
(2) a is even.

_________________

"Be challenged at EVERY MOMENT."

“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”

"Each stage of the journey is crucial to attaining new heights of knowledge."

Rules for posting in verbal forum | Please DO NOT post short answer in your post!

Advanced Search : https://gmatclub.com/forum/advanced-search/

Senior Manager
Senior Manager
avatar
B
Joined: 13 Oct 2016
Posts: 367
GPA: 3.98
Re: If a, b, and c are positive integers and a/6+b/5 =c/30, is c divisibl  [#permalink]

Show Tags

New post 01 May 2017, 06:38
2
ziyuen wrote:
If a, b, and c are positive integers and \(\frac{a}{6} + \frac{b}{5} = \frac{c}{30}\), is c divisible by 5?

(1) b is divisible by 5.
(2) a is even.


Hi

Multiplying both sides by 30:

5a + 6b = c

(1) b is divisible by 5.

b=5x

5a + 6*5x = c

5(a + 6x) = c ----> c is a multiple of 5. Sufficient.

(2) a is even

a = 2y

10y + 6b = c

c is even, but depending on y and b it may o may not be multiple of 5. Insufficient.

Answer A.
CEO
CEO
User avatar
D
Joined: 12 Sep 2015
Posts: 3009
Location: Canada
Re: If a, b, and c are positive integers and a/6+b/5 =c/30, is c divisibl  [#permalink]

Show Tags

New post 01 May 2017, 07:12
Top Contributor
1
ziyuen wrote:
If a, b, and c are positive integers and \(\frac{a}{6} + \frac{b}{5} = \frac{c}{30}\), is c divisible by 5?

(1) b is divisible by 5.
(2) a is even.


Target question: Is c divisible by 5?

Given: a/6 + b/5 = c/30
First let's eliminate the fractions by multiplying both sides of the equation be the least common multiple of 6, 5 and 30.
So, we'll multiply both sides by 30 to get: 5a + 6b = c

Statement 1: b is divisible by 5
We can apply a useful divisibility rule that says: "If j is divisible by x and k is divisible by x, then (j+k) is divisible by x"
We can ready see that 5a is divisible by 5.
And, if b is divisible by 5, then we know that 6b is divisible by 5.
So, by the above rule, we know that 5a + 6b is divisible by 5.
Since 5a + 6b = c, we can conclude that c IS divisible by 5
Since we can answer the target question with certainty, statement 1 is SUFFICIENT

Statement 2: a is even
There are several cases that satisfy statement 2. Here are two:
Case a: a = 2 and b = 5. we know that c = 5a + 6b. So, c = 5(2) + 6(5) = 40, which is divisible by 5. In this case, c IS divisible by 5
Case b: a = 2 and b = 1. we know that c = 5a + 6b. So, c = 5(2) + 6(1) = 16, which is NOT divisible by 5. In this case, c is NOT divisible by 5
Since we cannot answer the target question with certainty, statement 2 is NOT SUFFICIENT

Answer:

RELATED VIDEO

_________________

Brent Hanneson – GMATPrepNow.com
Image
Sign up for our free Question of the Day emails

Director
Director
avatar
S
Joined: 12 Nov 2016
Posts: 749
Location: United States
Schools: Yale '18
GMAT 1: 650 Q43 V37
GRE 1: Q157 V158
GPA: 2.66
Re: If a, b, and c are positive integers and a/6+b/5 =c/30, is c divisibl  [#permalink]

Show Tags

New post 19 Jul 2017, 21:16
hazelnut wrote:
If a, b, and c are positive integers and \(\frac{a}{6} + \frac{b}{5} = \frac{c}{30}\), is c divisible by 5?

(1) b is divisible by 5.
(2) a is even.


We don't really mind the equation here we just have to focus on

5a + 6b =30

Basically- the only thing you need to know in this question is whether 6 is a multiple of 5- if 6 is a multiple of 5 then C must be divisible by five because the sum of the two numbers that share a common multiple will always be divisible by that common multiple

Statement 1 is all you need

A
EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 12660
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: If a, b, and c are positive integers and a/6+b/5 =c/30, is c divisibl  [#permalink]

Show Tags

New post 02 Apr 2018, 10:35
Hi All,

This DS question can be solved in a number of different ways. It's perfect for TESTing Values, but there's also a Number Property built into it that you might find useful. To start, "rewriting" the given equation is a must:

5A + 6B = C

We're also told that A, B and C are positive integers. We're asked if C is a multiple of 5? This is a YES/NO question.

1) B is a MULTIPLE of 5.

You can absolutely TEST Values here, but here's the Number Property worth knowing…

Since A is an integer, 5A is a MULTIPLE of 5
We're told that B is a multiple of 5, so 6B is also MULTIPLE of 5

If you add a multiple of 5 to another multiple of 5, then you will end up with a MULTIPLE of 5.
So, C will ALWAYS be a multiple of 5
Fact 1 is SUFFICIENT

2) A is even

5A will be multiple of 5, since 5(even) is a multiple of 5
However, 6B may or may not be a multiple of 5, depending on what B is.
For example, if B=1, then 6B = 6; if B = 5, then 6B = 30

There's no way to know if we'll end up with a sum that is a multiple of 5 or not.
Fact 2 is INSUFFICIENT.

Final Answer:

GMAT assassins aren't born, they're made,
Rich
_________________

760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/

*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****

SVP
SVP
User avatar
D
Joined: 26 Mar 2013
Posts: 1836
Reviews Badge CAT Tests
Re: If a, b, and c are positive integers and a/6+b/5 =c/30, is c divisibl  [#permalink]

Show Tags

New post 02 Apr 2018, 12:56
hazelnut wrote:
If a, b, and c are positive integers and \(\frac{a}{6} + \frac{b}{5} = \frac{c}{30}\), is c divisible by 5?

(1) b is divisible by 5.
(2) a is even.


Analyzing the question stem:

\(\frac{a}{6} + \frac{b}{5} = \frac{c}{30}\)........Multiply by 30

\(5a + 6b = c\)

C is multiple of 5, if both terms are multiple of 5....... We see that (5a) is multiple of 5, so (6b) must be multiple of b to make c divisible by 5

The question could rephrased:

Is B multiple of 5??

(1) b is divisible by 5.

This directly answers the question.

Sufficient

(2) a is even.

It does not affect b so it does not help answer the question

Insufficient

Answer: A
GMAT Club Bot
Re: If a, b, and c are positive integers and a/6+b/5 =c/30, is c divisibl &nbs [#permalink] 02 Apr 2018, 12:56
Display posts from previous: Sort by

If a, b, and c are positive integers and a/6+b/5 =c/30, is c divisibl

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.