GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 18 Oct 2018, 17:47

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If a class of 10 students has five men, how many ways can the men and

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
avatar
Joined: 17 Aug 2009
Posts: 184
If a class of 10 students has five men, how many ways can the men and  [#permalink]

Show Tags

New post 12 Jan 2010, 07:01
2
3
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

49% (01:34) correct 51% (01:37) wrong based on 105 sessions

HideShow timer Statistics

If a class of 10 students has five men, how many ways can the men and women be arranged in a circle so that no two men sit next to each other?

A) 5!4!
B) 5!5!
C) 4!4!
D) 10!
E) 10!/5!
Math Expert
User avatar
V
Joined: 02 Aug 2009
Posts: 6958
Re: If a class of 10 students has five men, how many ways can the men and  [#permalink]

Show Tags

New post 12 Jan 2010, 07:47
hi ans is A 5!4!....
for notwo men to sit together, either all are in even or odd posn..
fix one at any one posn... then rest four can be fixed in 4! ways...
also rest five posn of women can be fixed in 5!..
total ways 5!4!
_________________

1) Absolute modulus : http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
2)Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html
3) effects of arithmetic operations : https://gmatclub.com/forum/effects-of-arithmetic-operations-on-fractions-269413.html


GMAT online Tutor

Manager
Manager
avatar
Joined: 27 Apr 2008
Posts: 174
Re: If a class of 10 students has five men, how many ways can the men and  [#permalink]

Show Tags

New post 12 Jan 2010, 07:51
2
1
Imagine the circle is now a straight line:

_ _ _ _ _ _ _ _ _ _
1 2 3 4 5 6 7 8 9 10

Let's say that we make a man sits in spot 1. Then, a man must also sit in spots 3, 5, 7, 9. There are 5! ways of arranging the man this way. However, since this is a table (ie: circle), there are 5 ways where the initial man can sit, so we must divide 5! by 5, which equals to 4!.

It follows that a woman must sit in spots 2, 4, 6, 8, 10. There are 5! ways to arrange this.

Therefore, we get 4!5!. So the answer is A) 5!4!
Manager
Manager
avatar
Joined: 17 Aug 2009
Posts: 184
Re: If a class of 10 students has five men, how many ways can the men and  [#permalink]

Show Tags

New post 12 Jan 2010, 08:00
Since the first position can be fixed by a man or a woman, and then we can have the alternate arrangement of man-woman-man........

Shouldn't it be (5!4!)*2?
2 - for different choices of the first position.please tell me where i am going wrong.
Manager
Manager
avatar
Joined: 27 Apr 2008
Posts: 174
Re: If a class of 10 students has five men, how many ways can the men and  [#permalink]

Show Tags

New post 12 Jan 2010, 13:57
1
You don't have to x2 because you're in a circle.
Manager
Manager
avatar
Joined: 17 Aug 2009
Posts: 184
Re: If a class of 10 students has five men, how many ways can the men and  [#permalink]

Show Tags

New post 14 Jan 2010, 06:43
thanks for the info

+1 for you
Intern
Intern
avatar
Joined: 20 Jul 2015
Posts: 2
If a class of 10 students has five men, how many ways can the men and  [#permalink]

Show Tags

New post 02 Oct 2015, 13:10
2
2
The pattern has to be MWMWM... or WMWMW...

There are 5! ways of choosing the 5 women, and 5! ways of choosing the 5 men. So we multiply the two, since for each combination of women we have 5! combinations of men. So there are 5!*5! ways of alternating 5 women and 5 men, starting with women.

But what if we started with men? Then we would have the same number of combinations as we do when a woman is first. We multiply by 2. So we have 5!*5!*2 ways of alternating 5 women and 5 men.

Lastly, this is a circular configuration of 10 people, so we divide by 10. Why do we do this? Well, in a circular combination of 3 objects A,B, and C, the configurations ABC, BCA, and CAB are identical. This is because circular configurations look at ORDER, not at ABSOLUTE POSITION. ABC, BCA, and CAB all have the same order (C comes after B, B comes after A...). So in a circular configuration of 3 objects, every configuration can be shifted over 3 times and the order would be the same. The same happens here, so we divide by 10.

The result? \(\frac{5!*5!*2}{10}= 5!4!\)
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 8457
Premium Member
Re: If a class of 10 students has five men, how many ways can the men and  [#permalink]

Show Tags

New post 23 Mar 2018, 03:34
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

GMAT Club Bot
Re: If a class of 10 students has five men, how many ways can the men and &nbs [#permalink] 23 Mar 2018, 03:34
Display posts from previous: Sort by

If a class of 10 students has five men, how many ways can the men and

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.