Bunuel
If \(\square\) and \(\triangle\) represent digits, is the 5-digit number \(14,2\square \triangle\) divisible by 25.
(1) \(\square + \triangle = 12\)
(2) The 5-digit number \(14,2\square \triangle\) is divisible by 5.
DS20434
Asked: If \(\square\) and \(\triangle\) represent digits, is the 5-digit number \(14,2\square \triangle\) is divisible by 25.
For a number to be divisible by 25, last 2 digits should be {00,25,50,75}
(1) \(\square + \triangle = 12\)
If \((\square, \triangle)\)= (8,4); NO
Bur if \((\square, \triangle)\)= (7,5); YES
NOT SUFFICIENT
(2) The 5-digit number \(14,2\square \triangle\) is divisible by 5.
\(\triangle \)= {0,5}
If \(\square = 1\); NO
But if\( (\square, \triangle)\) = {(0,0),(2,5),(5,0),(7,5)}; YES
NOT SUFFICIENT
(1) +(2)
(1) \(\square + \triangle = 12\)
(2) The 5-digit number \(14,2\square \triangle\) is divisible by 5.
\( \triangle\) = {0,5}
\((\square, \triangle) = (7,5)\); Since \((\triangle, \square) \neq (12,0)\)
SUFFICIENT
IMO C