February 23, 2019 February 23, 2019 07:00 AM PST 09:00 AM PST Learn reading strategies that can help even nonvoracious reader to master GMAT RC. Saturday, February 23rd at 7 AM PT February 24, 2019 February 24, 2019 07:00 AM PST 09:00 AM PST Get personalized insights on how to achieve your Target Quant Score.
Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 10 Oct 2005
Posts: 111
Location: Hollywood

If M is the least common multiple of 90,196, and 300, which
[#permalink]
Show Tags
Updated on: 07 Feb 2014, 09:21
Question Stats:
71% (02:23) correct 29% (02:39) wrong based on 495 sessions
HideShow timer Statistics
If M is the least common multiple of 90,196, and 300, which of the following is NOT a factor of M? A. 600 B. 700 C. 900 D. 2,100 E. 4,900
Official Answer and Stats are available only to registered users. Register/ Login.
_________________
The GMAT, too tough to be denied.
Beat the tough questions...
Originally posted by TOUGH GUY on 27 Nov 2005, 06:43.
Last edited by Bunuel on 07 Feb 2014, 09:21, edited 1 time in total.
Renamed the topic, edited the question and added the OA.




Director
Joined: 14 Sep 2005
Posts: 942
Location: South Korea

IF M is the least common multiple of 90,196 and 300, which of the following is NOT a factor of M?
A 600
B 700
C 900
D 2100
E 4900
90 = 2 * 3 * 3 * 5
196 = 2 * 2 * 7 * 7
300 = 2 * 2 * 3 * 5 * 5

LCM = 2 * 2 * 3 * 3 * 5 * 5 * 7 * 7
(TWO 2, TWO 3, TWO 5, TWO 7)
600 = 2 * 2 * 2 * 3 * 5 * 5
700 = 2 * 2 * 5 * 5 * 7
900 = 2 * 2 * 3 * 3 * 5 * 5
2100 = 2 * 2 * 3 * 5 * 5 * 7
4900 = 2 * 2 * 5 * 5 * 7 * 7
_________________
Auge um Auge, Zahn um Zahn !




Director
Joined: 24 Oct 2005
Posts: 619
Location: London

Yes, got the same ans.
M = 2*2*3*3*5*5*7*7
600 = 2*2*2*5*5*3  one 2 is left out here. So that is the answer.



Director
Joined: 14 Jan 2007
Posts: 732

first calculate the LCM of the given numbers
90 = 2*3*3*5
196=2*2*7*7
300=2*2*3*5*5
LCM = 2*2*3*3*5*5*7*7 this is the number M.
now check each number whether a factor of M.
Answer is 600.



Director
Joined: 30 Nov 2006
Posts: 570
Location: Kuwait

If M is the least common multiple of 90, 196, and 300, which of the following is NOT a factor of M?
Rule of Thumb: whenever you see Least Common Multiple (LCM), think of factors and preferebly prime factorization. Every nonprime integer can be factored into only prime numbers. So lets start prime factoring:
[P.S. if you need help in prime factoring tell us]
For easy start, whenever you see an even integer, start with the prime factor 2
90: 3 x 30 > 3 x 3 x 10 > 3 x 3 x 2 x 5
196: 2 x 98 > 2 x 2 x 49 > 2 x 2 x 7 x 7
300: 2 x 150 > 2 x 2 x 75 > 2 x 2 x 3 x 25 > 2 x 2 x 3 x 5 x 5
LCM of the three number must contain all prime factors of each and every one of the three numbers : 90, 196, and 300
LCM : 2 x 2 x 3 x 3 x 5 x 5 x 7 x 7 = M
A factor of M must contain one or more, but limited to the available ones, of the prime factors of LCM [M]
A. 600 : 2 x 3 x 2 x 5 x 2 x 5 [ uses three 2's > Not a Factor ]
B. 700 : 2 x 5 x 2 x 5 x 7 [ a factor of M ]
C. 900 : 3 x 3 x 2 x 2 x 5 x 5 [ a factor of M ]
D. 2,100 : 7 x 3 x 2 x 5 x 2 x 5 [ you tell me ]
E. 4,900 : 7 x 7 x 2 x 5 x 2 x 5 [ yes indeedy ]
It is A



Senior Manager
Joined: 11 Feb 2007
Posts: 334

Thank you vshaunak and Mishari for your clear explanation!!
So this is how to approach this kind of problem.
I should learn more of these approaches so that I don't have to plug in numbers for number property probs!



Manager
Joined: 30 Sep 2008
Posts: 111

Re: If M is the least common multiple of 90, 196, and 300, which
[#permalink]
Show Tags
01 Oct 2008, 01:28
90 = 3^2 x 2 x 5 196 = 7^2 x 2^2 300 = 3 x 5^2 x 2^2
so the least common = 7^2 x 2^2 x 3^2 x 5^2 = 7^2 x 3^2 x 100 = (7x3)^2 x 100
A. 6 = 3 x 2 <not B. 7 <ok C. 9 = 3^2 < ok D. 21 = 7 x 3 < ok E. 49 = 7^2 <ok
the answer is A



VP
Joined: 17 Jun 2008
Posts: 1392

Re: If M is the least common multiple of 90, 196, and 300, which
[#permalink]
Show Tags
01 Oct 2008, 12:19
lylya4 wrote: 90 = 3^2 x 2 x 5 196 = 7^2 x 2^2 300 = 3 x 5^2 x 2^2
so the least common = 7^2 x 2^2 x 3^2 x 5^2 = 7^2 x 3^2 x 100 = (7x3)^2 x 100
A. 6 = 3 x 2 <not B. 7 <ok C. 9 = 3^2 < ok D. 21 = 7 x 3 < ok E. 49 = 7^2 <ok
the answer is A I think, you missed one 2 in the least common multiple. It will be 7^2 * 5^2 * 3^2 * 2^3. To me, all the answer choices are factors of this least common multiple. Is there any typo in the question?



Intern
Joined: 29 Sep 2008
Posts: 46

Re: If M is the least common multiple of 90, 196, and 300, which
[#permalink]
Show Tags
01 Oct 2008, 14:47
scthakur wrote: lylya4 wrote: 90 = 3^2 x 2 x 5 196 = 7^2 x 2^2 300 = 3 x 5^2 x 2^2
so the least common = 7^2 x 2^2 x 3^2 x 5^2 = 7^2 x 3^2 x 100 = (7x3)^2 x 100
A. 6 = 3 x 2 <not B. 7 <ok C. 9 = 3^2 < ok D. 21 = 7 x 3 < ok E. 49 = 7^2 <ok
the answer is A I think, you missed one 2 in the least common multiple. It will be 7^2 * 5^2 * 3^2 * 2^3. To me, all the answer choices are factors of this least common multiple. Is there any typo in the question? A. LCM contains 2 2's whereas 600 = 25 * 3 * 8. thus cannot be a factor.



Intern
Joined: 04 May 2011
Posts: 9

Re: A concept math, pls help
[#permalink]
Show Tags
24 Aug 2011, 01:40
The key to this problem is breaking down the numbers into its prime factors. After that its a piece of cake!
90 > 3*3*5*2 196 > 2*2*7*7 300 > 3*2*2*5*5
M(LCM) = multiply all the factors (pick the highest power of the common factor)
M(LCM) = \(2^2*3^2*5^2*7^2\)
The question asks which is NOT A FACTOR of M: Only A(600) which has an additional factor 2 is not a factor of M 600 > \(2^3*3*5^2\) => it has an additional factor of 2 which is not present in M(only 2 factors of '2' is present here)



Intern
Joined: 09 Feb 2011
Posts: 11

Re: A concept math, pls help
[#permalink]
Show Tags
24 Aug 2011, 09:14
Just because I've into solving multiple problems today.
Here's how I think of it: you essentially need to pull out the primes one by one from 900, 196 and 300 respectively. The easiest way for me to do this is pull out tens first (which consists of 2*5, both primes) so 900  2 * 5 * 2 * 5 , leaving a 9 which is 3 *3 so you have 2, 2, 3, 3, 5, 5 300  2 *5 * 2 * 5, leaving 3 so 2, 2, 3, 5, 5 196 is trickier. Up until today I didn't know it was the square of 14 but once you know that: 196 = 2 * 7 * 2 * 7 so 2, 2, 7, 7 then make a list like srivats212 said but including the the number as much as it appears in any given number so 2, 2, 3, 3, 5, 5, 7, 7
Now find the number that requires any prime number to pop up more than it does in the bolded list.
600 = 2 * 5 * 2 * 5 * 2 * 3, so it needs 3 2's and you only have 2 twos in the bolded list, so isn't a factor of M.
I think if you want to do these things fast it's best to memorize all the squares up to 20. Which I haven't bothered up until now either, just did this in excel. 11 121 12 144 13 169 14 196 15 225 16 256 17 289 18 324 19 361 20 400 These numbers alone or multiples of these numbers seem to pop up a lot I suppose in other types of problems too. But for multiple/factor problems all you need to do is figure out the prime factors of the original number. For 324, the square root is 18. Then prime factors of 324 are 2 * 9 * 2 * 9. But memorization of the squares is essential for pattern recognition (and hence completion of problems in 2 minutes or less) I'm starting to realize.



Manager
Joined: 04 Apr 2010
Posts: 132

Re: A concept math, pls help
[#permalink]
Show Tags
24 Aug 2011, 10:31
A should the answer. We can get if by combined factorization. 600 is the only # that we can't get from combined factorization to calculate LCM.
_________________
Consider me giving KUDOS, if you find my post helpful. If at first you don't succeed, you're running about average. ~Anonymous



Intern
Joined: 01 Aug 2006
Posts: 33

Re: IF M is the least common multiple of 90,196 and 300, which
[#permalink]
Show Tags
07 Feb 2014, 09:15
90 = 2 * 3^2 * 5 196 = 2^2 * 7^2 300 = 2^2 * 3 * 5^2 LCM contains the HIGHEST power of EVERY number present in prime factorization. M = LCM = 2^2 * 3^2 *5^2 * 7^2.
Look @ answer options. A: 600 = 2^3 * 3 * 5^2 >Cannot be a factor because of 2^3.



SVP
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1820
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)

Re: If M is the least common multiple of 90,196, and 300, which
[#permalink]
Show Tags
03 Jun 2014, 22:18
90 = 2 * 3 * 3 * 5 196 = 2 * 2 * 7 * 7 300 = 2 * 2 * 3 * 5 * 5 Only 2 is common in all the 3 factorization So, LCM =\(\frac{90 * 196 * 300}{8} = 45 * 49 * 300\)(No need of further calculation) Testing Option I > 600. It is NOT the factor Answer = A = 600
_________________
Kindly press "+1 Kudos" to appreciate



Senior Manager
Joined: 04 Jul 2014
Posts: 296
Location: India
GMAT 1: 640 Q47 V31 GMAT 2: 640 Q44 V34 GMAT 3: 710 Q49 V37
GPA: 3.58
WE: Analyst (Accounting)

Re: If M is the least common multiple of 90, 196, and 300, which
[#permalink]
Show Tags
17 Nov 2014, 05:28
Here is @lyla4's answer in a manner understandable to late bloomers like me LCM is the product of the greatest power of each prime that appears in any of the numbers. 90 = 3^2 x 2 x 5 196 = 7^2 x 2^2300 = 3 x 5^2 x 2^2 So the least common multiple is = 7^2 x 2^2 x 3^2 x 5^2 = (7x3)^2 x 100 Divide each answer choice and the LCM by 100 Therefore LCM = (7x3)^2 Now we are looking for the choice in which, LCM/choice is not an integer. A. 6 = 3 x 2 <not B. 7 <ok C. 9 = 3^2 < ok D. 21 = 7 x 3 < ok E. 49 = 7^2 <ok the answer is A
_________________
Cheers!!
JA If you like my post, let me know. Give me a kudos!



CEO
Joined: 11 Sep 2015
Posts: 3447
Location: Canada

Re: If M is the least common multiple of 90,196, and 300, which
[#permalink]
Show Tags
30 Aug 2016, 10:12
TOUGH GUY wrote: If M is the least common multiple of 90,196, and 300, which of the following is NOT a factor of M?
A. 600 B. 700 C. 900 D. 2,100 E. 4,900 The least common multiple of 90, 196, and 300 = (2)(2)(3)(3)(5)(5)(7)(7) So, M = (2)(2)(3)(3)(5)(5)(7)(7) Now check the answer choices... A) 600600 = (2)(2)(2)(3)(5)(5) For 600 to be a factor of M, there must be three 2's, one 3 and two 5's "hiding" in the prime factorization of M. Since, M only has two 2's in its prime factorization, 600 is NOT a factor of M. Answer: For more on the relationship between factor and prime factorization, watch this video: https://www.gmatprepnow.com/module/gmat ... /video/825 ASIDE: I thought it might be useful to show one way to find the LCM of large numbers:
_________________
Test confidently with gmatprepnow.com



Current Student
Status: DONE!
Joined: 05 Sep 2016
Posts: 373

Re: If M is the least common multiple of 90,196, and 300, which
[#permalink]
Show Tags
29 Nov 2016, 14:37
90 = (2^3)(3^2)(5)
196 = (2^2)(7^2)
300 = (2^2)(3)(5^2)
LCM > (2^2)(3^2)(5^2)(7^2)
A. is the correct answer > 600 cannot be made from the prime numbers found in the LCM shown above.



EMPOWERgmat Instructor
Status: GMAT Assassin/CoFounder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 13585
Location: United States (CA)

Re: If M is the least common multiple of 90,196, and 300, which
[#permalink]
Show Tags
29 Jan 2018, 14:45
Hi All, This question is essentially about primefactorization. Here's a simple example of that concept: What is the least common multiple of 10 and 15. Now you probably already know that the LCM is 30, but here's WHY it's 30... 10 = (2)(5) 15 = (3)(5) When looking for the LCM, we need to multiply all of the prime factors of the numbers involved. However, each instance of a prime that shows up in both numbers should be counted just once (here, there's one 5 in both numbers, so we count that as just ONE 5 and not two 5s). This gives us... (2)(3)(5) = 30 We can then use those primes to figure out all of the divisors of the LCM: 1 2 3 5 (2)(3) = 6 (2)(5) = 10 (3)(5) = 15 (2)(3)(5) = 30 The exact same concept applies to this question  it's just that there's a lot more math work involved: 90 = (2)(3)(3)(5) 196 = (2)(2)(7)(7) 300 = (2)(2)(3)(5)(5) The LCM of these three numbers will include two 2s, two 3s, two 5s and two 7s: (2)(2)(3)(3)(5)(5)(7)(7) At this point, you should NOT multiply those numbers together  we're just going keep them as a reference point so that we can find the one answer that is NOT a possible factor from that list: Let's start with the easiest option first: Answer A: 600 = (2)(2)(2)(3)(5)(5) Notice how this number hast THREE 2s. This number is NOT possible given the list of primes that we have to work with, so it cannot be a factor of M. Final Answer: GMAT assassins aren't born, they're made, Rich
_________________
760+: Learn What GMAT Assassins Do to Score at the Highest Levels Contact Rich at: Rich.C@empowergmat.com
Rich Cohen
CoFounder & GMAT Assassin
Special Offer: Save $75 + GMAT Club Tests Free
Official GMAT Exam Packs + 70 Pt. Improvement Guarantee www.empowergmat.com/
*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****



NonHuman User
Joined: 09 Sep 2013
Posts: 9892

Re: If M is the least common multiple of 90,196, and 300, which
[#permalink]
Show Tags
21 Feb 2019, 21:44
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources




Re: If M is the least common multiple of 90,196, and 300, which
[#permalink]
21 Feb 2019, 21:44






