It is currently 13 Dec 2017, 16:30

Decision(s) Day!:

CHAT Rooms | Ross R1 | Kellogg R1 | Darden R1 | Tepper R1


Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If n and y are positive integers and 450y = n^3 which of the following

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

2 KUDOS received
Senior Manager
Senior Manager
avatar
Joined: 18 Jun 2007
Posts: 285

Kudos [?]: 66 [2], given: 0

If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 22 Oct 2008, 10:12
2
This post received
KUDOS
20
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

62% (01:04) correct 38% (01:20) wrong based on 722 sessions

HideShow timer Statistics

If n and y are positive integers and 450y = n^3, which of the following must be an integer

I. \(\frac{y}{3 * 2^2 * 5}\)

II. \(\frac{y}{3^2 * 2 * 5}\)

III. \(\frac{y}{3 * 2 * 5^2}\)

A. None.
B. I only.
C. II only.
D. III only.
E. I, II, and III
[Reveal] Spoiler: OA

Kudos [?]: 66 [2], given: 0

3 KUDOS received
VP
VP
User avatar
Joined: 05 Jul 2008
Posts: 1402

Kudos [?]: 453 [3], given: 1

Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 22 Oct 2008, 10:36
3
This post received
KUDOS
rishi2377 wrote:
If n and y are positive integers and 450y = n^3, which of the following must be an interger

I. y/ (3 * 2^2 * 5)

II. y/ (3^2 * 2 * 5)

III. y/ 3 * 2 * 5^2

A. None.
B. I only.
C. II only.
D. III only.
E. I, II, and III

OA to follow


450y = n^3 -> y = n3/450 -> n3 is divisible by 450 & n is +ve integer. look for values of n^3 such that n is integer and n is divisible by 450. Clearly we have to look in the order of 1000's to find a value such that n3 is divisible by 450 and n is integer.

n3=1000 n =10 not divisible by 450
n3=8000 n =20 not divisible by 450
n3=27000 n =30 divisible by 450 y = 2700/45 = 60

Look for I, II , III which have denominators 60,90,150.

only I does and hence B

Kudos [?]: 453 [3], given: 1

18 KUDOS received
VP
VP
User avatar
Joined: 30 Jun 2008
Posts: 1028

Kudos [?]: 737 [18], given: 1

Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 22 Oct 2008, 10:39
18
This post received
KUDOS
2
This post was
BOOKMARKED
rishi2377 wrote:
If n and y are positive integers and 450y = n^3, which of the following must be an interger

I. y/ (3 * 2^2 * 5)

II. y/ (3^2 * 2 * 5)

III. y/ 3 * 2 * 5^2

A. None.
B. I only.
C. II only.
D. III only.
E. I, II, and III

OA to follow


450y = n^3 means 450y is a cube.

450 = 3² * 2 * 5²

for a cube, the powers of the prime factors have to be multiples of 3

so if 450y is to be a cube then y has to be 3 * 2² * 5 ( to make the three prime factors have powers with multiples of 3)

so y/ 3 * 2² * 5 has to be an integer
_________________

"You have to find it. No one else can find it for you." - Bjorn Borg

Kudos [?]: 737 [18], given: 1

Intern
Intern
avatar
Joined: 04 Dec 2009
Posts: 20

Kudos [?]: 43 [0], given: 13

Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 23 Jan 2010, 23:25
I am not sure I fully understand the explanation.

Method1 asks for a technique to find a value of n divisible by 450.This seems to be a time consuming method
The other method I dont seem to understand.450=3^2*2*5^2
I also understand the statement "for a cube, the powers of the prime factors have to be multiples of 3"

What I dont understand is how be 3 * 2² * 5 makes each of the prime factors have powers with multiples of 3

Could someone help me on this please.

Kudos [?]: 43 [0], given: 13

Expert Post
2 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42583

Kudos [?]: 135543 [2], given: 12697

Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 24 Jan 2010, 01:34
2
This post received
KUDOS
Expert's post
5
This post was
BOOKMARKED
gautamsubrahmanyam wrote:
I am not sure I fully understand the explanation.

Method1 asks for a technique to find a value of n divisible by 450.This seems to be a time consuming method
The other method I dont seem to understand.450=3^2*2*5^2
I also understand the statement "for a cube, the powers of the prime factors have to be multiples of 3"

What I dont understand is how be 3 * 2² * 5 makes each of the prime factors have powers with multiples of 3

Could someone help me on this please.


We have \(450y=2*3^2*5^2*y=n^3\), as \(y\) and \(n\) are positive integers, \(y\) must complete the powers of 2, 3 and 5 so that these powers will be the multiples of 3. Hence the least value of \(y\) is \(2^2*3*5\). In this case \(2*3^2*5^2*y=(2*3^2*5^2)*(2^2*3*5)=2^3*3^3*5^3=(2*3*5)^3=n^3\).

As the least value of \(y\) must be \(2^2*3*5\), then \(\frac{y}{2^2*3*5}\), will equal to 1. Choice B.

Well generally speaking (and little complicating), \(y\) must be of a form \(y=2^{2+3p}*3^{1+3q}*5^{1+3r}*x^3\), where \(p\), \(q\) and \(r\) are the integers \(\geq0\) and \(x\) (\(x\geq{0}\)), is some other multiple of \(y\) which also has the power of \(3\).

For example \(y\) can be \(y=2^5*3^7*5^{16}*91^3\), in this case \((2*3^2*5^2)*(2^5*3^7*5^{16}*91^3)=(2^2*3^3*5^6*91)^3=n^3\).
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135543 [2], given: 12697

Intern
Intern
avatar
Joined: 09 Feb 2009
Posts: 17

Kudos [?]: 1 [0], given: 1

Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 14 Mar 2010, 14:10
great explanation! thanks!

Bunuel wrote:
gautamsubrahmanyam wrote:
I am not sure I fully understand the explanation.

Method1 asks for a technique to find a value of n divisible by 450.This seems to be a time consuming method
The other method I dont seem to understand.450=3^2*2*5^2
I also understand the statement "for a cube, the powers of the prime factors have to be multiples of 3"

What I dont understand is how be 3 * 2² * 5 makes each of the prime factors have powers with multiples of 3

Could someone help me on this please.


We have \(450y=2*3^2*5^2*y=n^3\), as \(y\) and \(n\) are positive integers, \(y\) must complete the powers of 2, 3 and 5 so that these powers will be the multiples of 3. Hence the least value of \(y\) is \(2^2*3*5\). In this case \(2*3^2*5^2*y=(2*3^2*5^2)*(2^2*3*5)=2^3*3^3*5^3=(2*3*5)^3=n^3\).

As the least value of \(y\) must be \(2^2*3*5\), then \(\frac{y}{2^2*3*5}\), will equal to 1. Choice B.

Well generally speaking (and little complicating), \(y\) must be of a form \(y=2^{2+3p}*3^{1+3q}*5^{1+3r}*x^3\), where \(p\), \(q\) and \(r\) are the integers \(\geq0\) and \(x\) (\(x\geq{0}\)), is some other multiple of \(y\) which also has the power of \(3\).

For example \(y\) can be \(y=2^5*3^7*5^{16}*91^3\), in this case \((2*3^2*5^2)*(2^5*3^7*5^{16}*91^3)=(2^2*3^3*5^6*91)^3=n^3\).

Kudos [?]: 1 [0], given: 1

Manager
Manager
avatar
Joined: 14 Dec 2010
Posts: 54

Kudos [?]: 2 [0], given: 4

Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 18 Dec 2010, 03:00
viperm5 wrote:
great explanation! thanks!

Bunuel wrote:
gautamsubrahmanyam wrote:
I am not sure I fully understand the explanation.

Method1 asks for a technique to find a value of n divisible by 450.This seems to be a time consuming method
The other method I dont seem to understand.450=3^2*2*5^2
I also understand the statement "for a cube, the powers of the prime factors have to be multiples of 3"

What I dont understand is how be 3 * 2² * 5 makes each of the prime factors have powers with multiples of 3

Could someone help me on this please.


We have \(450y=2*3^2*5^2*y=n^3\), as \(y\) and \(n\) are positive integers, \(y\) must complete the powers of 2, 3 and 5 so that these powers will be the multiples of 3. Hence the least value of \(y\) is \(2^2*3*5\). In this case \(2*3^2*5^2*y=(2*3^2*5^2)*(2^2*3*5)=2^3*3^3*5^3=(2*3*5)^3=n^3\).

As the least value of \(y\) must be \(2^2*3*5\), then \(\frac{y}{2^2*3*5}\), will equal to 1. Choice B.

Well generally speaking (and little complicating), \(y\) must be of a form \(y=2^{2+3p}*3^{1+3q}*5^{1+3r}*x^3\), where \(p\), \(q\) and \(r\) are the integers \(\geq0\) and \(x\) (\(x\geq{0}\)), is some other multiple of \(y\) which also has the power of \(3\).

For example \(y\) can be \(y=2^5*3^7*5^{16}*91^3\), in this case \((2*3^2*5^2)*(2^5*3^7*5^{16}*91^3)=(2^2*3^3*5^6*91)^3=n^3\).





As y=2*2*3*5=60,so B as well as C is also correct because II. y/ (3^2 * 2 * 5) is equal to 60/60=1 and that is an integer.

The same way III. y/ 3 * 2 * 5^2 can also be the integer because when we multiply 5*5*5 to y=2*2*3*5 ie 60*125 it provides the III. y/ 3 * 2 * 5^2 with the integer value.

So the answer should be E.

Let me have ur thoughts on the same.

Kudos [?]: 2 [0], given: 4

Expert Post
3 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42583

Kudos [?]: 135543 [3], given: 12697

Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 18 Dec 2010, 03:19
3
This post received
KUDOS
Expert's post
Eshika wrote:
As y=2*2*3*5=60,so B as well as C is also correct because II. y/ (3^2 * 2 * 5) is equal to 60/60=1 and that is an integer.

The same way III. y/ 3 * 2 * 5^2 can also be the integer because when we multiply 5*5*5 to y=2*2*3*5 ie 60*125 it provides the III. y/ 3 * 2 * 5^2 with the integer value.

So the answer should be E.

Let me have ur thoughts on the same.


OA for this question is B, not E.

Next, y does not necessarily equal to 2^2*3*5, the least value of \(y\) equals to \(2^2*3*5\).

As we are asked which of the following options MUST be an integer then these options must be an integers for the least value of \(y\):

I. y/(3*2^2*5) --> (2^2*3*5)/(3*2^2*5)=1=integer;

II. y/(3^2*2*5) --> (2^2*3*5)/(3^2*2*5)=2/3, note an integer;

III. y/(3*2*5^2) --> (2^2*3*5)/(3*2*5^2)=2/5, note an integer;

So the answer is B (I only).

Check similar questions:

if-x-and-y-are-positive-integers-and-180x-y-100413.html?hilit=complete%20powers#p774914
can-someone-answer-this-and-tell-me-why-92066.html?hilit=complete%20powers#p707517
number-properties-92562.html?hilit=following%20must%20none#p712584
og-quantitative-91750.html#p704028
division-factor-88388.html#p666722

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135543 [3], given: 12697

Manager
Manager
avatar
Joined: 14 Dec 2010
Posts: 54

Kudos [?]: 2 [0], given: 4

Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 18 Dec 2010, 03:27
Yeah I got that...Thanks for your quick response. :)

Kudos [?]: 2 [0], given: 4

Board of Directors
User avatar
G
Joined: 01 Sep 2010
Posts: 3422

Kudos [?]: 9494 [0], given: 1203

Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 14 Apr 2012, 08:01
Bunuel wrote:
gautamsubrahmanyam wrote:
I am not sure I fully understand the explanation.

Method1 asks for a technique to find a value of n divisible by 450.This seems to be a time consuming method
The other method I dont seem to understand.450=3^2*2*5^2
I also understand the statement "for a cube, the powers of the prime factors have to be multiples of 3"

What I dont understand is how be 3 * 2² * 5 makes each of the prime factors have powers with multiples of 3

Could someone help me on this please.


We have \(450y=2*3^2*5^2*y=n^3\), as \(y\) and \(n\) are positive integers, \(y\) must complete the powers of 2, 3 and 5 so that these powers will be the multiples of 3. Hence the least value of \(y\) is \(2^2*3*5\). In this case \(2*3^2*5^2*y=(2*3^2*5^2)*(2^2*3*5)=2^3*3^3*5^3=(2*3*5)^3=n^3\).

As the least value of \(y\) must be \(2^2*3*5\), then \(\frac{y}{2^2*3*5}\), will equal to 1. Choice B.

Well generally speaking (and little complicating), \(y\) must be of a form \(y=2^{2+3p}*3^{1+3q}*5^{1+3r}*x^3\), where \(p\), \(q\) and \(r\) are the integers \(\geq0\) and \(x\) (\(x\geq{0}\)), is some other multiple of \(y\) which also has the power of \(3\).

For example \(y\) can be \(y=2^5*3^7*5^{16}*91^3\), in this case \((2*3^2*5^2)*(2^5*3^7*5^{16}*91^3)=(2^2*3^3*5^6*91)^3=n^3\).


Thanks. Now is clear because the question that I had, it was in the form n3 and NOT n^3 so I didn't think how to solve this problem because the to quantities did not balance each other :)
_________________

COLLECTION OF QUESTIONS AND RESOURCES
Quant: 1. ALL GMATPrep questions Quant/Verbal 2. Bunuel Signature Collection - The Next Generation 3. Bunuel Signature Collection ALL-IN-ONE WITH SOLUTIONS 4. Veritas Prep Blog PDF Version 5. MGMAT Study Hall Thursdays with Ron Quant Videos
Verbal:1. Verbal question bank and directories by Carcass 2. MGMAT Study Hall Thursdays with Ron Verbal Videos 3. Critical Reasoning_Oldy but goldy question banks 4. Sentence Correction_Oldy but goldy question banks 5. Reading-comprehension_Oldy but goldy question banks

Kudos [?]: 9494 [0], given: 1203

2 KUDOS received
Intern
Intern
avatar
Joined: 13 Nov 2010
Posts: 42

Kudos [?]: 27 [2], given: 2

Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 12 May 2012, 07:00
2
This post received
KUDOS
1
This post was
BOOKMARKED
rishi2377 wrote:
If n and y are positive integers and 450y = n^3, which of the following must be an interger

I. y/ (3 * 2^2 * 5)

II. y/ (3^2 * 2 * 5)

III. y/ (3 * 2 * 5^2)

A. None.
B. I only.
C. II only.
D. III only.
E. I, II, and III

OA to follow




A difficult problem which can be easy if we understand

the question states that 450y=n^3 that means 450y must be to the third power of n ,so if a number raised to the power of cube then all numbers must be in 3 no's for example if we take 216 then if we factorize 216 we get 2*2*2*3*3*3 that means in cube power we have each number 3 times so let's go to our problem here we have 3 2's and 3 3's

so 450y must have all numbers in 3 no's so if we factorize 450 we get 450=2*3*3*5*5 as we need all numbers in 3 no's that means we should have 3 2's,3 3's,3 5's so we need extra 2 2's,a 3 and a 5 to make 450y perfect cube
so y must be 2^2*3*5=>4*3*5 =>60 so y must be 60 to make 450y a perfect cube

so if we look at given options

1. y/ (3 * 2^2 * 5) => y/3*4*5 =>y/60 as we know that y is 60 so 60/60=1 which is integer
2. y/ (3^2 * 2 * 5) => y/9*2*5 =>y/90 as we know that y is 60 so 60/90 =>2/3 which is not integer
3. y/ (3 * 2 * 5^2) => y/3*2*25 =>y/150 as we know that y is 60 so 60/150 =>2/5 which is not integer


so we get only 1 as integer so our answer is b

Hope it's helpful.

Kudos [?]: 27 [2], given: 2

Intern
Intern
avatar
Joined: 04 Feb 2012
Posts: 5

Kudos [?]: [0], given: 0

Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 11 Jul 2012, 11:41
Can someone please explain to me why y cannot simply be 2.

If 450y = n^3, then cannot it be 3x3x5x5x2 and y=2 so that would make 3x3x5x5x2x2 so it ends up 30x30x30 = nxnxn. Then if y=x and the equation works, then y/I, II, or III would not work.

In this case, the answer should be A, None. Please help, I've been racking my brain over why y cannot be 2, but it makes perfect sense.

Kudos [?]: [0], given: 0

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42583

Kudos [?]: 135543 [0], given: 12697

Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 12 Jul 2012, 01:09
mthasan1 wrote:
Can someone please explain to me why y cannot simply be 2.

If 450y = n^3, then cannot it be 3x3x5x5x2 and y=2 so that would make 3x3x5x5x2x2 so it ends up 30x30x30 = nxnxn. Then if y=x and the equation works, then y/I, II, or III would not work.

In this case, the answer should be A, None. Please help, I've been racking my brain over why y cannot be 2, but it makes perfect sense.


If \(y=2\) then \(450y=2^2*3^2*5^2=30^2=900\) not \(30^3\) as you've written.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135543 [0], given: 12697

Intern
Intern
User avatar
Joined: 12 Jul 2014
Posts: 10

Kudos [?]: 10 [0], given: 40

Location: India
Concentration: Operations, Technology
GMAT Date: 11-06-2014
GRE 1: 303 Q159 V144
Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 19 Oct 2014, 18:23
rishi2377 wrote:
If n and y are positive integers and 450y = n^3, which of the following must be an interger

I. y/ (3 * 2^2 * 5)

II. y/ (3^2 * 2 * 5)

III. y/ 3 * 2 * 5^2

A. None.
B. I only.
C. II only.
D. III only.
E. I, II, and III


Hello There,
450 X y = n^3

Factors of 450 = (3^2) X (5^2) X 2
Since, there is a cube on RHS, lets try to make LHS also a cube.
To do this, we need one 3, one 5 and two 2s which will result in 3^3 X 5^3 X 2^3
Now, y = 3 X 5 X 2^2 = 60.

Now verifying with options, only I results in an integer.

Answer - B
_________________

Regards,
Bharat Bhushan Sunkara.


"You need to sacrifice what you are TODAY, for what you want to be TOMORROW!!"

Kudos [?]: 10 [0], given: 40

Intern
Intern
avatar
Joined: 10 Dec 2014
Posts: 37

Kudos [?]: 6 [0], given: 5

GMAT Date: 12-30-2014
Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 26 Dec 2014, 11:01
450y = n^3 means 450y is a cube.

450 = 3² * 2 * 5²

for a cube, the prime factors should be in a set of 3

so Y/3*2²*5

Kudos [?]: 6 [0], given: 5

Intern
Intern
avatar
Joined: 04 Mar 2015
Posts: 2

Kudos [?]: [0], given: 0

Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 07 Mar 2015, 09:33
Could someone please explain why 2,3,and 5 have to be in powers that is a multiple of 3? Recognizing that seems to be the crux of the problem. I am not sure why if n^3 that means the prime factors have to be in powers of 3 also. If anyone could provide explanations or links for this rule it would be much appreciated! Thanks!

Kudos [?]: [0], given: 0

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42583

Kudos [?]: 135543 [0], given: 12697

Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 08 Mar 2015, 06:12
khl52 wrote:
Could someone please explain why 2,3,and 5 have to be in powers that is a multiple of 3? Recognizing that seems to be the crux of the problem. I am not sure why if n^3 that means the prime factors have to be in powers of 3 also. If anyone could provide explanations or links for this rule it would be much appreciated! Thanks!


Say \(n = p^2*q^5\), where p and q are primes, then \(n^3 = (p^2*q^5)^3=p^{(2*3)}*q^{(5*3)}=p^6*q^{15}\). So, whatever prime factorization n has, n^3 will multiply the powers of the primes by 3.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135543 [0], given: 12697

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 14869

Kudos [?]: 287 [0], given: 0

Premium Member
Re: If n and y are positive integers and 450y = n^3 which of the following [#permalink]

Show Tags

New post 28 Oct 2017, 23:43
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 287 [0], given: 0

Re: If n and y are positive integers and 450y = n^3 which of the following   [#permalink] 28 Oct 2017, 23:43
Display posts from previous: Sort by

If n and y are positive integers and 450y = n^3 which of the following

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.