Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

K and L are each four-digit positive integers with thousands [#permalink]

Show Tags

28 Jan 2012, 00:32

4

This post received KUDOS

23

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

35% (medium)

Question Stats:

74% (01:53) correct
26% (02:40) wrong based on 534 sessions

HideShow timer Statistics

K and L are each four-digit positive integers with thousands, hundreds, tens, and units digits defined as a, b, c, and d, respectively, for the number K, and p, q, r, and s, respectively, for the number L. For numbers K and L, the function W is defined as \(5^a 2^b 7^c 3^d\) ÷ \(5^p 2^q 7^r 3^s\). The function Z is defined as (K – L) ÷ 10. If W = 16, what is the value of Z?

(A) 16 (B) 20 (C) 25 (D) 40 (E) It cannot be determined from the information given.

K and L are each four-digit positive integers with thousands, hundreds, tens, and units digits defined as a, b, c, and d, respectively, for the number K, and p, q, r, and s, respectively, for the number L. For numbers K and L, the function W is defined as \(5^a 2^b 7^c 3^d\) ÷ \(5^p 2^q 7^r 3^s\). The function Z is defined as (K – L) ÷ 10. If W = 16, what is the value of Z?

(A) 16 (B) 20 (C) 25 (D) 40 (E) It cannot be determined from the information given.

Given: \(w=\frac{5^a*2^b*7^c*3^d}{5^p*2^q*7^r*3^s}=16\) --> \(w=5^{a-p}*2^{b-q}*7^{c-r}*3^{d-s}=2^4\) --> the powers of 3, 5, and 7 must be zero and the power of 2 must be 4: \(a=p\), \(b-q=4\), \(c=r\) and \(d=s\)

Now, as thousands, tens, and units digits in K and L are equal and the difference between hundreds' digits is 4, then K-L=400 (for example K=1923 and L=1523 --> K-L=1923-1523=400).

K and L are each four-digit positive integers with thousands, hundreds, tens, and units digits defined as a, b, c, and d, respectively, for the number K, and p, q, r, and s, respectively, for the number L. For numbers K and L, the function W is defined as \(5^a 2^b 7^c 3^d\) ÷ \(5^p 2^q 7^r 3^s\). The function Z is defined as (K – L) ÷ 10. If W = 16, what is the value of Z?

(A) 16 (B) 20 (C) 25 (D) 40 (E) It cannot be determined from the information given.

Given: \(w=\frac{5^a*2^b*7^c*3^d}{5^p*2^q*7^r*3^s}=16\) --> \(w=5^{a-p}*2^{b-q}*7^{c-r}*3^{d-s}=2^4\) --> the powers of 3, 5, and 7 must be zero and the power of 2 must be 4: \(a=p\), \(b-q=4\), \(c=r\) and \(d=s\)

Now, as thousands, tens, and units digits in K and L are equal and the difference between hundreds' digits is 4, then K-L=400 (for example K=1923 and L=1523 --> K-L=1923-1523=400).

Re: K and L are each four-digit positive integers with thousands [#permalink]

Show Tags

27 Oct 2014, 08:03

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: K and L are each four-digit positive integers with thousands [#permalink]

Show Tags

29 Nov 2015, 22:22

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

[quote="enigma123"]K and L are each four-digit positive integers with thousands, hundreds, tens, and units digits defined as a, b, c, and d, respectively, for the number K, and p, q, r, and s, respectively, for the number L. For numbers K and L, the function W is defined as \(5^a 2^b 7^c 3^d\) ÷ \(5^p 2^q 7^r 3^s\). The function Z is defined as (K – L) ÷ 10. If W = 16, what is the value of Z?

(A) 16 (B) 20 (C) 25 (D) 40 (E) It cannot be determined from the information given.

Given: K = abcd = 1000a + 100b + 10c + d L = pqrs = 1000p + 100q + 10r + s W = \(5^a 2^b 7^c 3^d\) ÷ \(5^p 2^q 7^r 3^s\) = \(5^{a-p} 2^{b-q} 3^{c-r} 5^{d-s}\) = 16 = \(2^4\)

W can 16 only when W carries the powers of 2 only. Hence b - q = 4 (i) And the rest of the powers will be 0. a= p, c = r, d = s (ii)

Required: Z = (K – L) ÷ 10 =? Z = (abcd - pqrs)÷10 = (1000a + 100b + 10c + d) - (1000p + 100q + 10r + s) ÷ 10 Z = 1000 (a - p) + 100(b - q) + 10 (c - r) + 10 (d - s) ÷ 10 From equations (i) and (ii) Z = 100(b-q) ÷ 10 = 100*4 ÷ 10= 40 Option D
_________________