GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 25 May 2020, 03:26

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# The numbers {a, b,c} are three positive integers - Problem solving

Author Message
TAGS:

### Hide Tags

Intern
Joined: 27 Oct 2018
Posts: 18
Location: Viet Nam
Concentration: Finance, Strategy
GMAT 1: 580 Q49 V20
GPA: 3.08
The numbers {a, b,c} are three positive integers - Problem solving  [#permalink]

### Show Tags

12 Jul 2019, 05:17
1
2
00:00

Difficulty:

65% (hard)

Question Stats:

51% (01:33) correct 49% (01:11) wrong based on 105 sessions

### HideShow timer Statistics

The numbers {a, b,c} are three positive integers. If (a * b * c)/14 equals an integer and (b * c)/4 equals an integer, what is the smallest possible integer value of a?

A. 1
B. 2
C. 4
D. 7
E. 14
Director
Joined: 01 Mar 2019
Posts: 528
Location: India
Concentration: Strategy, Social Entrepreneurship
GMAT 1: 580 Q48 V21
GPA: 4
Re: The numbers {a, b,c} are three positive integers - Problem solving  [#permalink]

### Show Tags

12 Jul 2019, 05:23
Least values of a,b,c can be 1,2,7....for a*b*c/14 is an integer and for b*c/4 least values of b,c can be (1,4)(4,1)(2,2)

From above least value of a=7 then b,c can be any of them which satisfies both the equations.....correct me if I'm wron?

Posted from my mobile device
Intern
Joined: 27 Oct 2018
Posts: 18
Location: Viet Nam
Concentration: Finance, Strategy
GMAT 1: 580 Q49 V20
GPA: 3.08
Re: The numbers {a, b,c} are three positive integers - Problem solving  [#permalink]

### Show Tags

12 Jul 2019, 05:45
1
Least values of a,b,c can be 1,2,7....for a*b*c/14 is an integer and for b*c/4 least values of b,c can be (1,4)(4,1)(2,2)

From above least value of a=7 then b,c can be any of them which satisfies both the equations.....correct me if I'm wron?

Posted from my mobile device

madgmat2019, I had the same solution as your, but the OA is A. I do not understand the official explanation. Hope someone can help.

--------

TEXT EXPLANATION

This problem is about divisibility. If we want a to be as small as possible, then it would make sense to "take care" of all the divisibility issues with the second fraction, so that there are no requirements that a has to fulfill.

For example, let b = 4 and c = 14, the values of the two denominators. Then

$$\frac{(b * c)}{4}$$ = $$\frac{(4 * 14)}{4}$$ = 14

So, these choices for b and c satisfy the second condition. Now, look at the first fraction:

$$\frac{(a * b * c)}{14}$$= $$\frac{(a * 4 * 14)}{14}$$ = a * 4

The choices we made for b & c allow us to cancel the denominators, so the only requirement now is that a * 4 is an integer. Well, any integer times 4 is still an integer, so that's really no requirement at all. The value a can be any positive integer, so we can make it the smallest positive integer.

a = 1

Senior Manager
Joined: 12 Sep 2017
Posts: 306
The numbers {a, b,c} are three positive integers - Problem solving  [#permalink]

### Show Tags

14 Jul 2019, 12:49
The statement does not say the integers but be one digit.

Then a could be 1

B could be 28 and C could be 1 also.

Or

A= 1, B=7, C=4
Intern
Joined: 15 Jul 2019
Posts: 11
Re: The numbers {a, b,c} are three positive integers - Problem solving  [#permalink]

### Show Tags

10 Aug 2019, 10:49
jfranciscocuencag wrote:
The statement does not say the integers but be one digit.

Then a could be 1

B could be 28 and C could be 1 also.

Or

A= 1, B=7, C=4

Actually, it does say that a is an integer...
Intern
Joined: 15 Sep 2018
Posts: 1
Re: The numbers {a, b,c} are three positive integers - Problem solving  [#permalink]

### Show Tags

12 Aug 2019, 08:50
Condition 1 - (a*b*c) is divisible by 14 implies (a*b*c) is divisible by (1*7*2) or (1*1*14)

Condition 2 - (b*c) is divisible by 4 implies (b*c) is divisible by (2*2) or (4*1)

Consider (a*b*c) = 28
Since we have to minimize a, maximize b and c. So (b*c) can be = 28 which satisfy condition 1 and condition 2. Hence a can take the least value which is 1.
Intern
Joined: 20 Mar 2019
Posts: 23
The numbers {a, b,c} are three positive integers - Problem solving  [#permalink]

### Show Tags

07 May 2020, 07:30
Starfruit wrote:
The numbers {a, b,c} are three positive integers. If (a * b * c)/14 equals an integer and (b * c)/4 equals an integer, what is the smallest possible integer value of a?

A. 1
B. 2
C. 4
D. 7
E. 14

SOLUTION:
Pick the first monomial and multiply by 2/2 (which is equal 1), split the denominator in 7*2, then simplify and divide the two terms of the product:
(a * b * c)/14=(2a/7)*[(b * c)/4]=(2a/7)*[(b * c)/4]
Remarks:
- [(b * c)/4] is an integer (we don't know if odd or even)
- (2a/7) must be an integer!! (if the blue term were even this could have also been values like 0.5, 1.5, 2.5, 3.5, etc... but we're not in that case)

WHY IS THE TEXT EXPLANATION WRONG?
If a=1 we get:
- (2/7)*[(b * c)/4]=[(2 * b * c)/(4 * 7)]=integer -----> true only if (b*c) is divisible by 2 (it's given that is divisible by 4) and 7 -not given- (like in the particular case used picking numbers by the text, b=4 and c=14... indeed taking a different "c" -not multiple of 7- would lead to a totally different result)

Among the options the smallest possible integer value for "a" that guarantees (2a/7) to be an integer is clearly:
a=7

The numbers {a, b,c} are three positive integers - Problem solving   [#permalink] 07 May 2020, 07:30