GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 06 Dec 2019, 11:22 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # The sum of 4 different odd integers is 64. What is the value of the

Author Message
TAGS:

### Hide Tags

Intern  B
Joined: 12 Oct 2014
Posts: 9
Location: India
GMAT 1: 700 Q48 V38 GPA: 3.2
The sum of 4 different odd integers is 64. What is the value of the  [#permalink]

### Show Tags

8
74 00:00

Difficulty:   55% (hard)

Question Stats: 63% (01:32) correct 37% (01:41) wrong based on 2250 sessions

### HideShow timer Statistics

The sum of 4 different odd integers is 64. What is the value of the greatest of these integers?

(1) The integers are consecutive odd numbers
(2) Of these integers, the greatest is 6 more than the least.
Math Expert V
Joined: 02 Sep 2009
Posts: 59587
Re: The sum of 4 different odd integers is 64. What is the value of the  [#permalink]

### Show Tags

17
20
The sum of 4 different odd integers is 64. What is the value of the greatest these integers?

(1) The integers are consecutive odd numbers --> x + (x + 2) + (x + 4) + (x + 6) = 64. We can find x. Sufficient.

(2) Of these integers, the greatest is 6 more than the least --> least = x and greatest = x + 6. Between x and x + 6, there are only 2 odd integers x + 2 and x + 4, so we have the same case as above. Sufficient.

P.S. Which Official Guide is this question from?
_________________
Director  B
Status: I don't stop when I'm Tired,I stop when I'm done
Joined: 11 May 2014
Posts: 522
GPA: 2.81
Re: The sum of 4 different odd integers is 64. What is the value of the  [#permalink]

### Show Tags

5
Top Contributor
2
AneesShaik wrote:
The sum of 4 different odd integers is 64. What is the value of the greatest these integers?

(1) The integers are consecutive odd numbers
(2) Of these integers, the greatest is 6 more than the least.

(1) The consecutive integers must be (15-2,15,15+2,15+4) so that the sum could be 64,So the greatest number is 19,Sufficient

(2) The range of the integers is 6,within this range to get sum 64 the integers must be (13,15,17,19) as statement (1),Sufficient

##### General Discussion
Intern  B
Joined: 03 Aug 2015
Posts: 32
Re: The sum of 4 different odd integers is 64. What is the value of the  [#permalink]

### Show Tags

1
Bunuel wrote:
The sum of 4 different odd integers is 64. What is the value of the greatest these integers?

(1) The integers are consecutive odd numbers --> x + (x + 2) + (x + 4) + (x + 6) = 64. We can find x. Sufficient.

(2) Of these integers, the greatest is 6 more than the least --> least = x and greatest = x + 6. Between x and x + 6, there are only 2 odd integers x + 2 and x + 4, so we have the same case as above. Sufficient.

P.S. Which Official Guide is this question from?

Bunuel : can you just help me understand why from the first statement we are taking x= x + (x + 2) + (x + 4) + (x + 6) = 64. Can't it be x + (x - 2) + (x - 4) + (x - 6) = 64 ..won't the greatest number be different
Math Expert V
Joined: 02 Sep 2009
Posts: 59587
Re: The sum of 4 different odd integers is 64. What is the value of the  [#permalink]

### Show Tags

2
nikhilbansal08 wrote:
Bunuel wrote:
The sum of 4 different odd integers is 64. What is the value of the greatest these integers?

(1) The integers are consecutive odd numbers --> x + (x + 2) + (x + 4) + (x + 6) = 64. We can find x. Sufficient.

(2) Of these integers, the greatest is 6 more than the least --> least = x and greatest = x + 6. Between x and x + 6, there are only 2 odd integers x + 2 and x + 4, so we have the same case as above. Sufficient.

P.S. Which Official Guide is this question from?

Bunuel : can you just help me understand why from the first statement we are taking x= x + (x + 2) + (x + 4) + (x + 6) = 64. Can't it be x + (x - 2) + (x - 4) + (x - 6) = 64 ..won't the greatest number be different

In my solution the smallest number is x and the greatest is x + 6.

In your case the smallest number is x - 6 and the greatest is x.

In any case the answer is the same.
_________________
Intern  B
Joined: 12 Oct 2014
Posts: 9
Location: India
GMAT 1: 700 Q48 V38 GPA: 3.2
Re: The sum of 4 different odd integers is 64. What is the value of the  [#permalink]

### Show Tags

2
1
Bunuel wrote:
The sum of 4 different odd integers is 64. What is the value of the greatest these integers?

(1) The integers are consecutive odd numbers --> x + (x + 2) + (x + 4) + (x + 6) = 64. We can find x. Sufficient.

(2) Of these integers, the greatest is 6 more than the least --> least = x and greatest = x + 6. Between x and x + 6, there are only 2 odd integers x + 2 and x + 4, so we have the same case as above. Sufficient.

P.S. Which Official Guide is this question from?

This is from OG 2017 Bunuel.
Target Test Prep Representative V
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 8620
Location: United States (CA)
Re: The sum of 4 different odd integers is 64. What is the value of the  [#permalink]

### Show Tags

8
2
AneesShaik wrote:
The sum of 4 different odd integers is 64. What is the value of the greatest of these integers?

(1) The integers are consecutive odd numbers
(2) Of these integers, the greatest is 6 more than the least.

We are given that the sum of 4 different odd integers is 64 and need to determine the value of the greatest of these integers.

Statement One Alone:

The integers are consecutive odd numbers

Since we know that the integers are consecutive odd integers, we can denote the integers as x, x + 2, x + 4, and x + 6 (notice that the largest integer is x + 6).

Since the sum of these integers is 64, we can create the following equation and determine x:

x + (x + 2) + (x + 4) + (x + 6) = 64

4x + 12 = 64

4x = 52

x = 13

Thus, the largest integer is 13 + 6 = 19.

Statement one alone is sufficient to answer the question. We can eliminate answer choices B, C, and E.

Statement Two Alone:

Of these integers, the greatest is 6 more than the least.

Using the information in statement two, we can determine that the four integers are consecutive odd integers. Let’s further elaborate on this idea. If we take any set of four consecutive odd integers, {1, 3, 5, 7}, {9, 11, 13, 15}, or {19, 21, 23, 25}, notice that in ALL CASES the greatest integer in the set is always 6 more than the least integer. In other words, the only way to fit two odd integers between the odd integers n and n + 6 is if the two added odd integers are n + 2 and n +4, thus making them consecutive odd integers. Since we have determined that we have a set of four consecutive odd integers and that their sum is 64, we can determine the value of all the integers in the set, including the value of the greatest one, in the same way we did in statement one. Thus, statement two is also sufficient to answer the question.

_________________

# Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Intern  B
Joined: 30 Dec 2015
Posts: 1
Re: The sum of 4 different odd integers is 64. What is the value of the  [#permalink]

### Show Tags

nikhilbansal08 wrote:
Bunuel wrote:
The sum of 4 different odd integers is 64. What is the value of the greatest these integers?

(1) The integers are consecutive odd numbers --> x + (x + 2) + (x + 4) + (x + 6) = 64. We can find x. Sufficient.

(2) Of these integers, the greatest is 6 more than the least --> least = x and greatest = x + 6. Between x and x + 6, there are only 2 odd integers x + 2 and x + 4, so we have the same case as above. Sufficient.

P.S. Which Official Guide is this question from?

Bunuel : can you just help me understand why from the first statement we are taking x= x + (x + 2) + (x + 4) + (x + 6) = 64. Can't it be x + (x - 2) + (x - 4) + (x - 6) = 64 ..won't the greatest number be different

Bunuel, I think nikhilbansal08 is right in this case.The question asks for :"What is the value of the greatest of these integers? "

now if we consider, clue no : 1,the we get

(2n+1) + (2n+3)+(2n+5)+(2n+7)=64
8(n+2)=64
n=6
so numbers are 13,15,17,19
greatest value is 19 in this case.

but if we consider

(2n+3)+(2n+5)+(2n+7)+(2n+9)=64
8(n+3)=64
n=5
numbers are 11,13,15,17

so the greatest value is 17

clearly,depending on the values of n the greatest value varies.
1 alone is insufficient.

clue 2 says ,greatest is 6 more the least,which means they are consecutive odd,but does not say any thing about greats value. 2 alone insufficient

if we combine clue 1+2 ,2 is redundant as from 1 we already know that they are consecutive odd.

Even after combining together they do not say anything about the greatest value.

I think E is the appropriate one.
Intern  B
Joined: 02 Feb 2016
Posts: 34
Location: United States
GMAT 1: 710 Q49 V38 GPA: 3.5
The sum of 4 different odd integers is 64. What is the value of the  [#permalink]

### Show Tags

TYPHOON12 wrote:
nikhilbansal08 wrote:
Bunuel wrote:
The sum of 4 different odd integers is 64. What is the value of the greatest these integers?

(1) The integers are consecutive odd numbers --> x + (x + 2) + (x + 4) + (x + 6) = 64. We can find x. Sufficient.

(2) Of these integers, the greatest is 6 more than the least --> least = x and greatest = x + 6. Between x and x + 6, there are only 2 odd integers x + 2 and x + 4, so we have the same case as above. Sufficient.

P.S. Which Official Guide is this question from?

Bunuel : can you just help me understand why from the first statement we are taking x= x + (x + 2) + (x + 4) + (x + 6) = 64. Can't it be x + (x - 2) + (x - 4) + (x - 6) = 64 ..won't the greatest number be different

Bunuel, I think nikhilbansal08 is right in this case.The question asks for :"What is the value of the greatest of these integers? "

now if we consider, clue no : 1,the we get

(2n+1) + (2n+3)+(2n+5)+(2n+7)=64
8(n+2)=64
n=6
so numbers are 13,15,17,19
greatest value is 19 in this case.

but if we consider

(2n+3)+(2n+5)+(2n+7)+(2n+9)=64
8(n+3)=64
n=5
numbers are 11,13,15,17

so the greatest value is 17

clearly,depending on the values of n the greatest value varies.
1 alone is insufficient.

clue 2 says ,greatest is 6 more the least,which means they are consecutive odd,but does not say any thing about greats value. 2 alone insufficient

if we combine clue 1+2 ,2 is redundant as from 1 we already know that they are consecutive odd.

Even after combining together they do not say anything about the greatest value.

I think E is the appropriate one.

TYPHOON12 The calculation is slightly off (by 2) in this part:
Quote:
(2n+3)+(2n+5)+(2n+7)+(2n+9)=64
8(n+3)=64
n=5
numbers are 11,13,15,17

so the greatest value is 17

If n = 5, then
(2n+3) = 10+3 = 13
(2n+5) = 10+5 = 15
(2n+7) = 10+7 = 17
(2n+9) = 10+9 = 19

The answer will still be the same, no matter how you look at it. Similarly, as you correctly pointed out, option 2 is redundant and thus this solution is also applicable to 2.
Manager  B
Joined: 23 Oct 2017
Posts: 60
Re: The sum of 4 different odd integers is 64. What is the value of the  [#permalink]

### Show Tags

For statement 1: take the 4 consecutive odd integers as: 2n-3, 2n-1, 2n+1, 2n+3
Sum = 8n = 64 => n=8;

For statement 2: if we see the above series difference is (2n+3) - (2n-3) =6, as this is the only series which can fit the requirement.

Thus D.
GMAT Club Legend  V
Joined: 12 Sep 2015
Posts: 4125
Re: The sum of 4 different odd integers is 64. What is the value of the  [#permalink]

### Show Tags

1
Top Contributor
1
AneesShaik wrote:
The sum of 4 different odd integers is 64. What is the value of the greatest of these integers?

(1) The integers are consecutive odd numbers
(2) Of these integers, the greatest is 6 more than the least.

Target question: What is the value of the greatest of these integers?

Given: The 4 numbers are different odd integers, and their sum is 64.

Statement 1: The integers are consecutive odd numbers
Let x = the first odd integer
So, x + 2 = the 2nd odd integer
So, x + 4 = the 3rd odd integer
So, x + 6 = the 4th odd integer
Since we're told the sum is 64, we can write: x + (x+2) + (x+4) + (x+6) = 64
Since we COULD solve this equation for x, we COULD determine all 4 values, which means we COULD determine the value of the greatest of the 4 odd integers
Of course, we're not going to waste valuable time solving the equation, since our sole goal is to determine whether the statement provides sufficient information.
Since we COULD answer the target question with certainty, statement 1 is SUFFICIENT

Statement 2: Of these integers, the greatest is 6 more than the least.
Notice that the 4 CONSECUTIVE integers (from statement 1) can be written as x, x+2, x+4 and x+6
Notice that the biggest number (x+6) is 6 more than the smallest number (x).
Since the 4 odd integers are different, statement 2 is basically telling us that the 4 integers are CONSECUTIVE
So, for the same reason we found statement 1 to be SUFFICIENT, we can also conclude that statement 2 is SUFFICIENT

Cheers,
Brent
_________________
VP  D
Joined: 09 Mar 2016
Posts: 1229
Re: The sum of 4 different odd integers is 64. What is the value of the  [#permalink]

### Show Tags

Bunuel wrote:
The sum of 4 different odd integers is 64. What is the value of the greatest these integers?

(1) The integers are consecutive odd numbers --> x + (x + 2) + (x + 4) + (x + 6) = 64. We can find x. Sufficient.

(2) Of these integers, the greatest is 6 more than the least --> least = x and greatest = x + 6. Between x and x + 6, there are only 2 odd integers x + 2 and x + 4, so we have the same case as above. Sufficient.

P.S. Which Official Guide is this question from?

Bunuel but numbers could be 11 13, 17 and 23 as well which add up to 64 Math Expert V
Joined: 02 Sep 2009
Posts: 59587
Re: The sum of 4 different odd integers is 64. What is the value of the  [#permalink]

### Show Tags

1
dave13 wrote:
Bunuel wrote:
The sum of 4 different odd integers is 64. What is the value of the greatest these integers?

(1) The integers are consecutive odd numbers --> x + (x + 2) + (x + 4) + (x + 6) = 64. We can find x. Sufficient.

(2) Of these integers, the greatest is 6 more than the least --> least = x and greatest = x + 6. Between x and x + 6, there are only 2 odd integers x + 2 and x + 4, so we have the same case as above. Sufficient.

P.S. Which Official Guide is this question from?

Bunuel but numbers could be 11 13, 17 and 23 as well which add up to 64 Those numbers do not satisfy any of the statements.

(1) The integers are consecutive odd numbers. Are 11, 13, 17 and 23 consecutive odd numbers? NO.

(2) Of these integers, the greatest is 6 more than the least. Is 23 (the greatest) 6 more than the least (11)? NO.
_________________
CEO  D
Status: GMATINSIGHT Tutor
Joined: 08 Jul 2010
Posts: 2977
Location: India
GMAT: INSIGHT
Schools: Darden '21
WE: Education (Education)
Re: The sum of 4 different odd integers is 64. What is the value of the gr  [#permalink]

### Show Tags

1
ritu1009 wrote:
The sum of 4 different odd integers is 64. What is the value of the greatest of these integers?
(1)The integers are consecutive odd numbers.
(2) Of these integers, the greatest is 6 more than the least.

Question : What is the greatest of four odd integers which sum up to 64?

Statement 1: The integers are consecutive odd numbers
(a-6)+(a-4)+(a-2)+(a) = 64
i.e. a = 19

SUFFICIENT

STatement 2: Of these integers, the greatest is 6 more than the least
This statement also confirms that the integers are consecutive
(a-6)+(a-4)+(a-2)+(a) = 64
i.e. a = 19

SUFFICIENT

ritu1009 : Please post DS question in respective forum. You seem to have posted it among PS questions
Bunuel : Please shift the question in the DS forum
_________________
Prosper!!!
GMATinsight
Bhoopendra Singh and Dr.Sushma Jha
e-mail: info@GMATinsight.com I Call us : +91-9999687183 / 9891333772
Online One-on-One Skype based classes and Classroom Coaching in South and West Delhi
http://www.GMATinsight.com/testimonials.html

ACCESS FREE GMAT TESTS HERE:22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION
Veritas Prep GMAT Instructor G
Joined: 01 Jul 2017
Posts: 80
Location: United States
Re: The sum of 4 different odd integers is 64. What is the value of the  [#permalink]

### Show Tags

1
1
There are a lot of explanations on this forum that focus blindly on the math. But remember: the GMAT is a critical-thinking test. Let's talk strategy here. For those of you studying for the GMAT, you will want to internalize strategies that actually minimize the amount of math that needs to be done, making it easier to manage your time. The tactics I will show you here will be useful for numerous questions, not just this one. My solution is going to walk through not just what the answer is, but how to strategically think about it. Ready? Here is the full "GMAT Jujitsu" for this question:

The theme of this entire problem is what I call in my classes “Looking for Leverage.” If a statement initially looks like it is insufficient, look for facts, relationships, and words that you can efficiently use to “squeeze” information out of. Sometimes a single word makes the biggest difference. Watch how we do this with this problem.

Statement #1 tells us that all of the four different odd integers are “consecutive.” This is massive leverage. Consecutive odd integers take the form of $$n$$, $$n+2$$, $$n+4$$, $$n+6$$, etc., with $$n$$ being the first odd integer. (If you don’t see this immediately, just plug in a concrete value for “$$n$$” to visualize it. For example: $$1$$, $$3$$, $$5$$, $$7$$ etc…) So, with this problem, we know that the “sum of 4 different odd integers is 64.” Thus:

$$n + (n+2) + (n+4) + (n+6) = 64$$

We have one equation with a single variable. There is no possibility of multiple possible values (such as with equations containing exponents, absolute values, inequalities, etc.) The real trap of Statement #1 is getting you to think that you actually need to solve for the greatest of the integers (in this case, “$$n+6$$”), instead of stopping as soon as you know you CAN solve. Many people spend too much time on Data Sufficiency questions because they think they need to get to the bitter end. You don’t. As soon as you have enough information to conclude that a statement is either sufficient or insufficient, you can move on. Since we can easily solve for “$$n$$”, we can easily figure out what “$$n+6$$” is. We don’t need to figure out that the four consecutive odd integers are $$13$$, $$15$$, $$17$$, and $$19$$. That is just extra work.

Statement #2 similarly requires us to identify small leverage words to squeeze information out of. In this case, statement #2 tells us that the greatest number is $$6$$ more than the smallest number. But the question stem also tells us that each odd number is “different.” With only $$6$$ separating the greatest odd number from the smallest odd number, the only POSSIBLE situation would be:

$$n + (n+2) + (n+4) + (n+6) = 64$$

And we have already done this analysis. Statement #2 is also sufficient, and the answer is “D”.

Now, let’s look back at this problem from the perspective of strategy. Your job as you study for the GMAT isn't to memorize the solutions to specific questions; it is to internalize strategic patterns that allow you to solve large numbers of questions. This problem can teach us patterns seen throughout the GMAT. First, the structure of this question is what I call “Cousins in Disguise” in my classes. Such problems are not uncommon on the GMAT. “Cousins in Disguise” happen when the two Data Sufficiency statements contain overlapping information, so that either: (1) the information in one statement is completely embedded in the other or (2) combining one statement with information in the question stem leads to the same information given in the other statement. Because of the overlapping information, the answer to “Cousins in Disguise” questions will never be “C”.

This problem also highlights the importance of “Looking for Leverage” in Data Sufficiency questions. (Okay, to be perfectly truthful, the idea of leveraging key details of questions is FUNDAMENTAL to practically every single GMAT question, in every section of the test: Verbal, Quant, IR, and AWA!) And that is thinking like the GMAT.
GMATH Teacher P
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 935
Re: The sum of 4 different odd integers is 64. What is the value of the  [#permalink]

### Show Tags

AneesShaik wrote:
The sum of 4 different odd integers is 64. What is the value of the greatest of these integers?

(1) The integers are consecutive odd numbers
(2) Of these integers, the greatest is 6 more than the least.

$$\sum\nolimits_{4\,\,{\rm{different}}\,\,{\rm{odds}}} {\,\, = \,\,\,64\,\,\,\,\left( * \right)}$$

$$? = \,\,{\rm{max}}\,\,{\rm{among}}\,\,{\rm{them}}$$

$$\left( 1 \right)\,\,\,{\rm{consecutive}}\,\,{\rm{and}}\,\,{\rm{sum}}\,\,64\,\,\,\left( {{\rm{from}}\,\,\left( * \right)} \right)\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,\,{\rm{they}}\,\,{\rm{are}}\,\,{\rm{unique}}!\,\,\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,\,{\rm{SUFF}}.\,\,\,\,$$

$$\left( 2 \right)\,\,\,{\text{must}}\,\,{\text{be}}\,\,{\text{consecutive}}\,\,\,\left[ {\,\,\underline {2M - 3} \,\,,\,\,2M - 1\,\,,\,\,2M + 1\,\,,\,\,\underline {2M + 3} \,\,} \right]\,\,\,\,\,\, \Rightarrow \,\,\,\,\left( 1 \right)\,\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,\,{\text{SUFF}}.$$

This solution follows the notations and rationale taught in the GMATH method.

Regards,
Fabio.

P.S.: the post immediately above is a typical example of a misunderstanding: math is NOT the same as doing calculations or lengthly equations. My course is probably the most mathematically-oriented in the whole PLANET and, even so, my solution above is probably the "less technical" (and probably the less time-consuming) of ALL others presented. Mathematics helps people gain quantitative maturity and THAT´S what the quant section of the GMAT is really about!
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
Intern  B
Joined: 31 Oct 2018
Posts: 7
Location: Viet Nam
Re: The sum of 4 different odd integers is 64. What is the value of the  [#permalink]

### Show Tags

From Q : odd integers
From S1: consecutive odd integers => write down x , x + 2 , x + 4, x +6 and their sum is 64 => S1 is sufficient
from s2: Largest - smallest = 6 . odd - odd = even (6) so there are two combinations of units digits : 9 minus 3 or 7 minus 1. sum of 4 integers is 64 => each is likely to be in the range 10 - 20 => two possible answers:
11 , 13, 15, 17 sum is not 64 => miss
13, 15, 17, 19 , sum is 64
=> S2 is sufficient Re: The sum of 4 different odd integers is 64. What is the value of the   [#permalink] 23 Jan 2019, 02:47
Display posts from previous: Sort by

# The sum of 4 different odd integers is 64. What is the value of the  