fskilnik
GMATH practice exercise (Quant Class 14)
What is the value of \({a^3} + {b^3}\) ?
\(\left( 1 \right)\,\,a + b = 1\)
\(\left( 2 \right)\,\,{a^2} + {b^2} = 2\)
\(? = {a^3} + {b^3}\)
\(\left( 1 \right)\,\,\left\{ \matrix{\\
\,{\rm{Take}}\,\,\left( {a,b} \right) = \left( {1,0} \right)\,\,\,\, \Rightarrow \,\,\,? = 1 \hfill \cr \\
\,{\rm{Take}}\,\left( {a,b} \right) = \left( {2, - 1} \right)\,\,\,\, \Rightarrow \,\,\,? \ne 1 \hfill \cr} \right.\)
\(\left( 2 \right)\,\,\left\{ \matrix{\\
\,{\rm{Take}}\,\,\left( {a,b} \right) = \left( {1,1} \right)\,\,\,\, \Rightarrow \,\,\,? = 2 \hfill \cr \\
\,{\rm{Take}}\,\left( {a,b} \right) = \left( {\sqrt 2 ,0} \right)\,\,\,\, \Rightarrow \,\,\,? \ne 2 \hfill \cr} \right.\)
\(\left( {1 + 2} \right)\,\,\,2 = \left( {a + b} \right)\left( {{a^2} + {b^2}} \right) = \underbrace {{a^3} + {b^3}}_{{\rm{focus}}} + ab\underbrace {\left( {a + b} \right)}_{ = \,1}\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,{?_{{\rm{temporary}}}} = ab\)
\(\left\{ \matrix{\\
\,{1^2} = {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} \hfill \cr \\
\,2 = {a^2} + {b^2} \hfill \cr} \right.\,\,\,\,\,\mathop \Rightarrow \limits^{\left( - \right)} \,\,\,2ab = - 1\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,{?_{{\rm{temporary}}}}\,\,{\rm{unique}}\,\,\,\,\, \Rightarrow \,\,\,\,\,{\rm{SUFF}}.\)
The correct answer is (C).
We follow the notations and rationale taught in the
GMATH method.
Regards,
Fabio.