GMAT Changed on April 16th - Read about the latest changes here

It is currently 25 Apr 2018, 07:43

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Which of the following functions f(x) satisfies the condition f(y-z) =

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Retired Moderator
avatar
Joined: 29 Apr 2015
Posts: 874
Location: Switzerland
Concentration: Economics, Finance
Schools: LBS MIF '19
WE: Asset Management (Investment Banking)
GMAT ToolKit User Premium Member
Which of the following functions f(x) satisfies the condition f(y-z) = [#permalink]

Show Tags

New post 08 Jul 2015, 12:42
5
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

62% (01:29) correct 38% (01:17) wrong based on 161 sessions

HideShow timer Statistics

Which of the following functions f(x) satisfies the condition f(y-z) = f(y)-f(z) for all possible values of y and z?

A. f(x) = \(x^2\)
B. f(x) = x + \((x-1)^2\)
C. f(x) = x-1
D. f(x) = 5/x
E. f(x) = x/5

Please anyone explain how this works efficiently. I always struggle when I see these function questions. What do do first? Plug in what into what? At first I did not understand what the question wanted with f(x) with regards to f(y-z)= .... for me, this feels like reading chinese :!:

[Reveal] Spoiler:
Note the phrasing of the question: "for all possible values of y and z". Only the right function will satisfy the condition for every possible value you choose; the other four answer choices may satisfy the condition for some values, but not for others.

Don't mess with the algebra, plug in easy numbers (for instance, z=1 and y=2) into each of the functions and POE. Keep plugging in and eliminate answer choices that do not meet the condition, until you are left with a single answer choice.

Plug in z = 1 and y = 2:

--> f(y-z) = f(2-1) = f(1) = 1-1 = 0

--> f(y) - f(z) = f(2) - f(1) = (2-1) - (1-1) = 1

Thus f(y-z) ≠ f(y) - f(z) for z=1 and y=2 and the answer is eliminated.
[Reveal] Spoiler: OA

_________________

Saving was yesterday, heat up the gmatclub.forum's sentiment by spending KUDOS!

PS Please send me PM if I do not respond to your question within 24 hours.

1 KUDOS received
Current Student
avatar
S
Joined: 20 Mar 2014
Posts: 2646
Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
GMAT ToolKit User Premium Member Reviews Badge
Re: Which of the following functions f(x) satisfies the condition f(y-z) = [#permalink]

Show Tags

New post 08 Jul 2015, 13:02
1
This post received
KUDOS
reto wrote:
Which of the following functions f(x) satisfies the condition f(y-z) = f(y)-f(z) for all possible values of y and z?

A. f(x) = x2
B. f(x) = x + (x-1)2
C. f(x) = x-1
D. f(x) = 5/x
E. f(x) = x/5

Please anyone explain how this works efficiently. I always struggle when I see these function questions. What do do first? Plug in what into what? At first I did not understand what the question wanted with f(x) with regards to f(y-z)= .... for me, this feels like reading chinese :!:

[Reveal] Spoiler:
Note the phrasing of the question: "for all possible values of y and z". Only the right function will satisfy the condition for every possible value you choose; the other four answer choices may satisfy the condition for some values, but not for others.

Don't mess with the algebra, plug in easy numbers (for instance, z=1 and y=2) into each of the functions and POE. Keep plugging in and eliminate answer choices that do not meet the condition, until you are left with a single answer choice.

Plug in z = 1 and y = 2:

--> f(y-z) = f(2-1) = f(1) = 1-1 = 0

--> f(y) - f(z) = f(2) - f(1) = (2-1) - (1-1) = 1

Thus f(y-z) ≠ f(y) - f(z) for z=1 and y=2 and the answer is eliminated.


Please format your question properly. I think option A is \(x^2\) and not x2.

Whenever you see function questions, more often than not, you will be able to solve the questions by plugging in. Also, you need to understand what do you mean by 'f(x)'. It means that there is a relationship in x that is satisfied by all values of x.

In the given question, you need to evaluate all the given f(x) such that f(y-z)=f(y)-f(z) for all y ,z (the underline portion means that the correct option HAS to be true for any set of values of y and z).

Now, look at the first option,

f(x) = \(x^2\) (I am assuming that you wanted to write \(x^2\))

Do not worry about the variable being x,y or z. You just need to realize that there is a functional connection between the variables.

Now, assume y=4 and z=3

f(4-3)=f(1)=1^2=1

and f(4)=16 (substitute x=4 in f(x) = \(x^2\)), f(3)=9 and f(4)-f(3) = 7 not equal to f(4-3). Thus this version of f(x) is incorrect. Repeat the same (with the same set of numbers) and you will see that only E remains.

More questions to practice: search.php?search_id=tag&tag_id=61
Senior Manager
Senior Manager
avatar
Joined: 15 Sep 2011
Posts: 347
Location: United States
WE: Corporate Finance (Manufacturing)
GMAT ToolKit User
Re: Which of the following functions f(x) satisfies the condition f(y-z) = [#permalink]

Show Tags

New post 08 Jul 2015, 17:55
1
This post was
BOOKMARKED
The pick numbers strategy is probably the most efficient, so most should stick with that one. The theory behind it in layman's terms, since that's what I prefer, is that for each answer choice, plug whatever is in the function from the question stem where the variable \(x\) is in the answer choice.

So for answer choice A. \(f(x)=x^{2}\), plug \((y-z)\) into the equation (as though \(y-z\) were \(x\) itself) and perform the algebra. Therefore, since the functional notation is \(f(y-z) = f(y)-f(z)\), the LHS is \((y-z)^{2}\) and the right hand side is \(y^{2} - z^{2}\). The question is: are both sides equal? Not here, and therefore you must do the same for each answer. So replace \(x\) with the variables of each function from the question \((y-z)\), \(y\) and \(z\) up until you find the equation where both sides are equal.

I found Magoosh has one of the better explanations of functional notation should you need a resource aside from gmatclub.
http://magoosh.com/gmat/2012/function-notation-on-the-gmat/

Thanks,
Intern
Intern
avatar
Joined: 12 Oct 2016
Posts: 2
Re: Which of the following functions f(x) satisfies the condition f(y-z) = [#permalink]

Show Tags

New post 02 Nov 2016, 19:51
Hi, i still don't understand this question. Could anyone plug in values in the E options to facilitate a better understanding.
3 KUDOS received
Director
Director
avatar
P
Joined: 14 Nov 2014
Posts: 668
Re: Which of the following functions f(x) satisfies the condition f(y-z) = [#permalink]

Show Tags

New post 02 Nov 2016, 22:11
3
This post received
KUDOS
Swatipr wrote:
Hi, i still don't understand this question. Could anyone plug in values in the E options to facilitate a better understanding.


E. f(x) = x/5

Now for LHS x=y-z
so F(x) = F(y-z)
put x as Y-Z in X/5

f(y-z)=y-z/5= y/5-z/5---------1

similarly RHS

F(Y) = y/5---
F(Z)=Z/5 ---
F(Y)-F(Z)=Y/5 - Z/5------------2
we can se LHS =RHS ..so E remains.
Manager
Manager
avatar
B
Joined: 23 Oct 2017
Posts: 64
Re: Which of the following functions f(x) satisfies the condition f(y-z) = [#permalink]

Show Tags

New post 07 Jan 2018, 08:04
reto wrote:
Which of the following functions f(x) satisfies the condition f(y-z) = f(y)-f(z) for all possible values of y and z?

A. f(x) = \(x^2\)
B. f(x) = x + \((x-1)^2\)
C. f(x) = x-1
D. f(x) = 5/x
E. f(x) = x/5

Please anyone explain how this works efficiently. I always struggle when I see these function questions. What do do first? Plug in what into what? At first I did not understand what the question wanted with f(x) with regards to f(y-z)= .... for me, this feels like reading chinese :!:

[Reveal] Spoiler:
Note the phrasing of the question: "for all possible values of y and z". Only the right function will satisfy the condition for every possible value you choose; the other four answer choices may satisfy the condition for some values, but not for others.

Don't mess with the algebra, plug in easy numbers (for instance, z=1 and y=2) into each of the functions and POE. Keep plugging in and eliminate answer choices that do not meet the condition, until you are left with a single answer choice.

Plug in z = 1 and y = 2:

--> f(y-z) = f(2-1) = f(1) = 1-1 = 0

--> f(y) - f(z) = f(2) - f(1) = (2-1) - (1-1) = 1

Thus f(y-z) ≠ f(y) - f(z) for z=1 and y=2 and the answer is eliminated.



-------------------

Just replace x by "y-z" on LHS while x by y & x by z in RHS
Plugging in these values will help realize that quadratic functions wont follow f(y-z) = f(y)-f(z), as the squaring of two combined terms will be different from individual squaring.
& similary with linear functions with a constant wont follow this due to the constant being nullified in subtractions & added in additions.

So the best type of function would be a linear function without a constant like y=kx
Re: Which of the following functions f(x) satisfies the condition f(y-z) =   [#permalink] 07 Jan 2018, 08:04
Display posts from previous: Sort by

Which of the following functions f(x) satisfies the condition f(y-z) =

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.