Author 
Message 
TAGS:

Hide Tags

Current Student
Joined: 06 Sep 2013
Posts: 1997
Concentration: Finance

Re: Really tough [#permalink]
Show Tags
20 Feb 2014, 12:21
Bunuel wrote: roshanaslam wrote: 4 dices are thrown at the same time. What is the probability of getting ONLY 2 dices showing the same face?
A. 4/9 B. 5/9 C. 11/18 D. 7/9 E. none of the above
I suppose "only 2 dice showing the same face" means EXACTLY two? If so then: Total # of outcomes = 6^4 Favorable outcomes = 4C2=6, choosing two dice which will provide the same face, these two dice can take 6 values, other two 5 and 4. So, favorable outcomes=4C2*6*5*4. \(P=\frac{4C2*6*5*4}{6^4}=\frac{5}{9}\). Answer: B. If we have 4C2 aren't we assuming that the other two also have to be the same number? Or does it work for 2 the same number, the other two different? I thought that we had to use 4!/2!1!1! because the last two terms were different. Could anybody please clarify Thanks Cheers J



Math Expert
Joined: 02 Sep 2009
Posts: 39704

Re: Really tough [#permalink]
Show Tags
21 Feb 2014, 00:39
jlgdr wrote: Bunuel wrote: roshanaslam wrote: 4 dices are thrown at the same time. What is the probability of getting ONLY 2 dices showing the same face?
A. 4/9 B. 5/9 C. 11/18 D. 7/9 E. none of the above
I suppose "only 2 dice showing the same face" means EXACTLY two? If so then: Total # of outcomes = 6^4 Favorable outcomes = 4C2=6, choosing two dice which will provide the same face, these two dice can take 6 values, other two 5 and 4. So, favorable outcomes=4C2*6*5*4. \(P=\frac{4C2*6*5*4}{6^4}=\frac{5}{9}\). Answer: B. If we have 4C2 aren't we assuming that the other two also have to be the same number? Or does it work for 2 the same number, the other two different? I thought that we had to use 4!/2!1!1! because the last two terms were different. Could anybody please clarify Thanks Cheers J We have 4 dice (A, B, C, D). \(C^2_4\) is the ways to select which two dice out of 4, will provide the same face: (A, B), (A, C), (A, D), (B, C), (B, D), or (C, D) . Next, these two dice can take 6 values, the remaining two 5 and 4, respectively. So, the # of favorable outcomes is \(C^2_4*6*5*4\). Hope it's clear.
_________________
New to the Math Forum? Please read this: All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 01 Sep 2014
Posts: 5

Re: 4 dices are thrown at the same time. What is the probability [#permalink]
Show Tags
06 Oct 2014, 05:11
Although I did get the answer right,I could not figure out the breakup of other possibilities.And it has been bugging me. Total possible outcomes = 6 * 6 * 6 * 6 = 1296
Possibility of having no.s on all dices same = 6 * 1 = 6
Possibility of having 3 same no.s = 6 * 5 * 4!/3! = 120
Possibility of having 2 same no.s and 2 different= 6 * 5C2 * 4!/2! = 6 * 10 * 12 = 720
Possibility of having 2 pairs of same no.s = 6 * 5 =30
Possibility of having all different no.s = 6 * 5 * 4* 3 = 360 Now these possibilities don't add up 6 + 120 + 720 + 30 + 360 = 1236(total is 1296 i.e. 60 more than this) Can anybody please tell which possibilities have i missed??? Thanks



Math Expert
Joined: 02 Sep 2009
Posts: 39704

Re: 4 dices are thrown at the same time. What is the probability [#permalink]
Show Tags
06 Oct 2014, 08:08
arpitsharms wrote: Although I did get the answer right,I could not figure out the breakup of other possibilities.And it has been bugging me. Total possible outcomes = 6 * 6 * 6 * 6 = 1296
Possibility of having no.s on all dices same = 6 * 1 = 6
Possibility of having 3 same no.s = 6 * 5 * 4!/3! = 120
Possibility of having 2 same no.s and 2 different= 6 * 5C2 * 4!/2! = 6 * 10 * 12 = 720
Possibility of having 2 pairs of same no.s = 6 * 5 =30
Possibility of having all different no.s = 6 * 5 * 4* 3 = 360 Now these possibilities don't add up 6 + 120 + 720 + 30 + 360 = 1236(total is 1296 i.e. 60 more than this) Can anybody please tell which possibilities have i missed??? Thanks This should be 90: 3*(6*5). The number of ways to split 4 dice into 2 pairs is 3: AB  CD AC  BD AD  BC
_________________
New to the Math Forum? Please read this: All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 01 Sep 2014
Posts: 5

Re: 4 dices are thrown at the same time. What is the probability [#permalink]
Show Tags
06 Oct 2014, 10:54
Thanks a lot for the help.



GMAT Club Legend
Joined: 09 Sep 2013
Posts: 15990

Re: 4 dices are thrown at the same time. What is the probability [#permalink]
Show Tags
11 Oct 2015, 21:28
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources



Intern
Joined: 28 Nov 2012
Posts: 39

Re: 4 dices are thrown at the same time. What is the probability [#permalink]
Show Tags
18 Nov 2015, 05:06
Hello Bunuel In such a question, is it imperative to assume that the dice will be different (not identical)? Thank you Bunuel wrote: roshanaslam wrote: 4 dices are thrown at the same time. What is the probability of getting ONLY 2 dices showing the same face?
A. 4/9 B. 5/9 C. 11/18 D. 7/9 E. none of the above
I suppose "only 2 dice showing the same face" means EXACTLY two? If so then: Total # of outcomes = 6^4 Favorable outcomes = 4C2=6, choosing two dice which will provide the same face, these two dice can take 6 values, other two 5 and 4. So, favorable outcomes=4C2*6*5*4. \(P=\frac{4C2*6*5*4}{6^4}=\frac{5}{9}\). Answer: B.



Math Expert
Joined: 02 Sep 2009
Posts: 39704

Re: 4 dices are thrown at the same time. What is the probability [#permalink]
Show Tags
18 Nov 2015, 11:54
rsaahil90 wrote: Hello Bunuel In such a question, is it imperative to assume that the dice will be different (not identical)? Thank you Bunuel wrote: roshanaslam wrote: 4 dices are thrown at the same time. What is the probability of getting ONLY 2 dices showing the same face?
A. 4/9 B. 5/9 C. 11/18 D. 7/9 E. none of the above
I suppose "only 2 dice showing the same face" means EXACTLY two? If so then: Total # of outcomes = 6^4 Favorable outcomes = 4C2=6, choosing two dice which will provide the same face, these two dice can take 6 values, other two 5 and 4. So, favorable outcomes=4C2*6*5*4. \(P=\frac{4C2*6*5*4}{6^4}=\frac{5}{9}\). Answer: B. Yes. 3 on the first die, say on blue one, and 4 on the second die, say on red one, is a different case from 3 on the second die, on red die, and 4 on the first die, on blue one.
_________________
New to the Math Forum? Please read this: All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 06 Mar 2015
Posts: 29

Re: 4 dices are thrown at the same time. What is the probability [#permalink]
Show Tags
24 Jun 2016, 04:10
chetan2u wrote: my take on this is.... choosing first no will have possibility of 1.... choosing the same on any of other three dice is 1/6 . third dice can have any of remaining 5 so probab is 5/6... fourth dice can have any of remaining 4 so probab is 4/6... so prob=1*1/6*5/6*4/6....but there are six different values so it becomes =1*1/6*5/6*4/6*6=5/9.. anyone if i have gone wrong Hi, Why have you multiplied by 6? Thanks



Manager
Joined: 01 Mar 2014
Posts: 139

Re: 4 dices are thrown at the same time. What is the probability [#permalink]
Show Tags
24 Jun 2016, 22:44
MBAhereIcome wrote: \(= (\frac{1}{6}*\frac{1}{6}*6)*\frac{5}{6}*\frac{4}{6}*\frac{4!}{2!*2!}\) \(= \frac{5}{9}\)
we multiply by 6 because there are 6 possibilities of having same numbers {1,1}.. {6,6} etc. we multiply by 4! for possible combinations in between the four dices, by 2! for two same numbers and again by 2! for possibilities between same & notsame numbers. Can someone please explain why we are dividing again by 2!? Thanks!



Manager
Joined: 17 Aug 2015
Posts: 103

Re: 4 dices are thrown at the same time. What is the probability [#permalink]
Show Tags
24 Jun 2016, 23:52
This is a good question. Earlier I guessed the right answer and later understood why that must be right. Step 1. Choose a side : let us say 2. First we need to choose to put 2 in any of the four places. That is 4C2 = 6. To each of these there is 5*4 possibilities of other two sides not exactly same as 2. Now to each of the possibilities above 6*5*4 we need to multiply by 6. Since we chose 2 above, we can choose any of the six. So now required possibilities are 6*6*5*4. Prob = 6*6*5*4/6*6*6*6. = 20/36 = 5/9. Choice B



BSchool Forum Moderator
Joined: 17 Jun 2016
Posts: 274
Location: India
GPA: 3.65
WE: Engineering (Energy and Utilities)

Re: 4 dices are thrown at the same time. What is the probability [#permalink]
Show Tags
25 Jun 2016, 03:04
chetan2u wrote: my take on this is.... choosing first no will have possibility of 1.... choosing the same on any of other three dice is 1/6 . third dice can have any of remaining 5 so probab is 5/6... fourth dice can have any of remaining 4 so probab is 4/6... so prob=1*1/6*5/6*4/6....but there are six different values so it becomes =1*1/6*5/6*4/6*6=5/9.. anyone if i have gone wrong Nice explanation....I tried the same concept but faltered while calculating the probability of last dice (i considered 5/6 for that as well)... Your explanation just restored my faiths in my concepts (of course I made one of the classic error ....). Thanks ..
_________________
https://gmatclub.com/forum/mygmatjourneylast2weeksjourney650to233370.html#p1799551



Manager
Joined: 24 Jun 2016
Posts: 237
Location: Viet Nam
GPA: 4

Re: 4 dices are thrown at the same time. What is the probability [#permalink]
Show Tags
26 Jun 2016, 01:37
Bunuel wrote: roshanaslam wrote: 4 dices are thrown at the same time. What is the probability of getting ONLY 2 dices showing the same face?
A. 4/9 B. 5/9 C. 11/18 D. 7/9 E. none of the above
I suppose "only 2 dice showing the same face" means EXACTLY two? If so then: Total # of outcomes = 6^4 Favorable outcomes = 4C2=6, choosing two dice which will provide the same face, these two dice can take 6 values, other two 5 and 4. So, favorable outcomes=4C2*6*5*4. \(P=\frac{4C2*6*5*4}{6^4}=\frac{5}{9}\). Answer: B. The only thing I'd like to add, a potential shortcut, is that since the numerator has 5, and 5 is not divisible by 6, the final answer has to have a numerator divisible by 5, a condition that only answer choice B meets.
_________________
Offering top quality online and offline GMAT tutoring service in Vietnam, Southeast Asia, and worldwide.
$50/hour as of February 2017.
http://www.facebook.com/HanoiGMATtutor



Manager
Joined: 27 Aug 2015
Posts: 98

Re: 4 dices are thrown at the same time. What is the probability [#permalink]
Show Tags
28 Aug 2016, 11:29
chetan2u wrote: my take on this is.... choosing first no will have possibility of 1.... choosing the same on any of other three dice is 1/6 . third dice can have any of remaining 5 so probab is 5/6... fourth dice can have any of remaining 4 so probab is 4/6... so prob=1*1/6*5/6*4/6....but there are six different values so it becomes =1*1/6*5/6*4/6*6=5/9.. anyone if i have gone wrong Hi Chetanu I was attempting the question in same way. But I did not multiply it by 6. Why are we trying to multiply by 6.?



Manager
Joined: 18 Jun 2016
Posts: 108
Location: India
Concentration: Technology, Entrepreneurship
WE: Business Development (Computer Software)

Re: 4 dices are thrown at the same time. What is the probability [#permalink]
Show Tags
04 Oct 2016, 08:06
I solved it in this way there are 4 positions to be filled > _ * _ *_ * _ for 1st position we can choose any of 6 number > 6 * _ *_ * _ 2nd position must match 1st position that can be done in 1/6 ways > 6 * 1/6 *_ * _ 3rd must not match 1st or 2nd that can be done in 5/6 ways > 6 * 1/6 *5/6 * _ 4th must not match 1st or 2nd or 3rd that can be done in 4/6 ways > 6 * 1/6 *5/6 * 4/6 so answer comes to be 5/9. Though I got the answer ,I'm not sure if my logic is correct. Can someone please verify?
_________________
If my post was helpful, feel free to give kudos!




Re: 4 dices are thrown at the same time. What is the probability
[#permalink]
04 Oct 2016, 08:06



Go to page
Previous
1 2
[ 35 posts ]




