Last visit was: 14 Dec 2024, 15:41 It is currently 14 Dec 2024, 15:41
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 14 Dec 2024
Posts: 97,877
Own Kudos:
685,893
 []
Given Kudos: 88,271
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,877
Kudos: 685,893
 []
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
User avatar
zhanbo
Joined: 27 Feb 2017
Last visit: 07 Jul 2024
Posts: 1,470
Own Kudos:
2,359
 []
Given Kudos: 114
Location: United States (WA)
GMAT 1: 760 Q50 V42
GMAT 2: 760 Q50 V42
GRE 1: Q169 V168
GRE 2: Q170 V170
Expert reply
GMAT 2: 760 Q50 V42
GRE 1: Q169 V168
GRE 2: Q170 V170
Posts: 1,470
Kudos: 2,359
 []
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
User avatar
av1901
Joined: 28 May 2022
Last visit: 26 Sep 2024
Posts: 436
Own Kudos:
413
 []
Given Kudos: 83
Status:Dreaming and Working
Affiliations: None
WE:Brand Management (Manufacturing)
Products:
Posts: 436
Kudos: 413
 []
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
genericUser
Joined: 31 Jan 2022
Last visit: 22 Dec 2023
Posts: 113
Own Kudos:
78
 []
Given Kudos: 35
Location: Italy
GMAT 1: 670 Q49 V33
GMAT 2: 690 Q47 V37
GPA: 3.9
GMAT 2: 690 Q47 V37
Posts: 113
Kudos: 78
 []
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
I know the answer has already been give, but i would like to share with you all the general solution to find the number of trailing zeros for a factorial

let n! be the factorial we are intrested in

compute and sum
\(\frac{n}{5^i}\), \(i\) ranging from \(1\) to \(k\) such that \(\frac{n}{5^k}\geq1\)

the number of trailing zeros is obtained.

example
trailing zeros for \(1000!\)
\(i=0,\frac{1000}{5}=200\)
\(i=1,\frac{1000}{25}=40\)
\(i=2,\frac{1000}{125}=8\)
\(i=3,\frac{1000}{625}=1.6\implies 1\)
\(i=4,\frac{1000}{3125}=0.32 \implies 0\)

# of trailing zeros = \(249\)

Show SpoilerIf you want to have fun, count the zeros
\(1000!=402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000\)
Moderator:
Math Expert
97877 posts