fskilnik wrote:
GMATH practice exercise (Quant Class 2)
An airplane leaves city A to make a connection in city C, before going on to city B (as shown in the map). If the map scale is 1cm=100km, which of the following is closest to the minimum possible distance covered by the airplane from city A to city B, through city C?
(A) 1300 km
(B) 1250 km
(C) 1200 km
(D) 1150 km
(E) 1100 km
\(?\,\,\, \cong \,\,\,AC + CB\,\,\,\,\left[ {{\rm{km}}} \right]\)
\(\left[ {{\rm{cm}}} \right]\,\,\,::\,\,\,\left\{ \matrix{
AC = \sqrt {{2^2} + {8^2}} = \sqrt {{2^2} \cdot 17} = 2\sqrt {17} \,\,\,\mathop > \limits^ \approx \,\,\,8\,\,\,\,\left[ { = 2\sqrt {16} } \right] \hfill \cr
CB = \,\,3\sqrt 2 \,\, \cong \,\,3 \cdot 1.41 = 4.23 \hfill \cr} \right.\)
\(? = AC + CB\,\,\,\, \cong \,\,\,12.23 \cdot 100\,\,\,\,\, \Rightarrow \,\,\,\,\,\left( {\text{B}} \right)\,\,{\text{or}}\,\,\left( C \right)\,\,\, \ldots \,\,\,\,\underline {{\text{approx}}{\text{.}}\,\,{\text{improvement}}\,\,\,{\text{needed}}} !\)
\(\left\{ \matrix{
\sqrt {17} \cong 4 + {a \over {10}}\,\,\,\, \Rightarrow \,\,\,\,\,17 = 16 + {8 \over {10}}a + {{{a^2}} \over {100}}\,\,\,\, \Rightarrow \,\,\,a = 1 \hfill \cr
2\sqrt {17} \cong 2 \cdot 4.1 = 8.2 \hfill \cr} \right.\)
\(? = AC + CB\,\,\,\, \cong \,\,\,12.43 \cdot 100\,\,\,\,\, \Rightarrow \,\,\,\,\,\left( {\rm{B}} \right)\,\)
We follow the notations and rationale taught in the
GMATH method.
Regards,
Fabio.
_________________
Fabio Skilnik ::
GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here:
https://gmath.net