Set A {1, 2, 3, 4, 5}
Set B {1, 2, 3, 4, 5, 6, 7}
Bill randomly selects a number from set A, and Sue randomly selects a number from set B. What is the probability that Sue’s number is greater than Bill’s number?
method I :
total number of cases : (1,1) ; (1,2) ; (1,3) ; (1,4) ; (1,5) ; (1,6) ; (1,7) ; (2,1) ; (2,2) ; (2,3) ; (2,4) ; (2,5) ; (2,6) ; (2,7) ; (3,1) ; (3,2) ; (3,3) ; (3,4) ; (3,5) ; (3,6) ; (3,7) ; (4,1) ; (4,2) ; (4,3) ; (4,4) ; (4,5) ; (4,6) ; (4,7) ; (5,1) ; (5,2) ; (5,3) ; (5,4) ; (5,5) ; (5,6) ; (5,7) ;
= n(A) * n(B)
=5*7
=35
now,Sue’s number is greater than Bill’s number = (1,2) ; (1,3) ; (1,4) ; (1,5) ; (1,6) ; (1,7) ; (2,3) ; (2,4) ; (2,5) ; (2,6) ; (2,7) ;(3,4) ; (3,5) ; (3,6) ; (3,7) ; (4,5) ; (4,6) ; (4,7) ; (5,6) ; (5,7) ;
=6+5+4+3+2
=20
therefore, required probability = 20/35 = 4/7
correct answer A
method II :
the probability that Sue’s number is greater than Bill’s number
= P(getting 1)*P(getting >1)+P(getting 2)*P(getting >2)+P(getting 3)*P(getting >3)+P(getting 4)*P(getting >4)+P(getting 5)*P(getting >5)
= 1/5 *6/7 + 1/5 *5/7 + 1/5 *4/7 + 1/5 *3/7 + 1/5 *2/7
=6/35+5/35+4/35+3/35+2/35
=20/35
correct answer A
method III :
the probability that Sue’s number is greater than Bill’s number
=1- the probability that Sue’s number is less than or equal to Bill’s number
=1- [P(getting 1)*P(getting ≤1)+P(getting 2)*P(getting ≤2)+P(getting 3)*P(getting ≤3)+P(getting 4)*P(getting ≤4)+P(getting 5)*P(getting ≤5)]
=1-[1/5*1/7+1/5*2/7+1/5*3/7+1/5*4/7+1/5*5/7]
=1-[1/35+2/35+3/35+4/35+5/35]
=1-15/35
=20/35
correct answer A