how do you solve, in theory, to come to the conclusion that radius of the circumscribed circle is a*sqrt(3)/3?
is it because the diameter will be 1/2 time of the side?
in this case, the diameter will be a/2, and R is a/4, where a is the side of the equilateral triangle.
knowing that the triangle is inscribed in a circle, we can draw 2 radii which will connect with one side of the triangle, creating a 30-30-120 triangle. Then, we can draw a perpendicular, and get 2 triangles of 30-60-90, in which the longest leg will be a/2, where a is the side of the equilateral triangle.
is my way of thinking right?
in case we know area of the small circle, we can find the side of the equilateral triangle, and thus, can find the radius of the big circle.
in case we know the area of the equilateral triangle, we can deduct that A=[S^2 sqrt(3)]/4. Now, we can find the side of the equilateral triangle, and hence, find the radius of the big circle.
I believe this is more a 700 level question