Last visit was: 11 Jul 2025, 04:57 It is currently 11 Jul 2025, 04:57
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
amanvermagmat
User avatar
Retired Moderator
Joined: 22 Aug 2013
Last visit: 28 Mar 2025
Posts: 1,161
Own Kudos:
2,741
 [16]
Given Kudos: 480
Location: India
Posts: 1,161
Kudos: 2,741
 [16]
Kudos
Add Kudos
16
Bookmarks
Bookmark this Post
User avatar
chetan2u
User avatar
GMAT Expert
Joined: 02 Aug 2009
Last visit: 10 Jul 2025
Posts: 11,294
Own Kudos:
Given Kudos: 333
Status:Math and DI Expert
Products:
Expert
Expert reply
Posts: 11,294
Kudos: 41,675
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Archit3110
User avatar
Major Poster
Joined: 18 Aug 2017
Last visit: 11 July 2025
Posts: 8,337
Own Kudos:
Given Kudos: 243
Status:You learn more from failure than from success.
Location: India
Concentration: Sustainability, Marketing
GMAT Focus 1: 545 Q79 V79 DI73
GPA: 4
WE:Marketing (Energy)
GMAT Focus 1: 545 Q79 V79 DI73
Posts: 8,337
Kudos: 4,806
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
amanvermagmat
User avatar
Retired Moderator
Joined: 22 Aug 2013
Last visit: 28 Mar 2025
Posts: 1,161
Own Kudos:
Given Kudos: 480
Location: India
Posts: 1,161
Kudos: 2,741
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Archit3110
amanvermagmat
Eleven chocolates are distributed among 5 children: A, B, C, D & E: such that everyone gets at least one chocolate. What is the number of chocolates that E gets?

(1) D & E get equal number of chocolates.

(2) Each of A, B, C, D get a distinct number of chocolates from each other.

amanvermagmat

From 1:
a+b+c+d+e=11
since d=e
so can be any value a+b+c<=9 as minimum of value of D & E would be 1..
not sufficient

From 2:
a,b,c,d get distinct no of chocolates
so 1+2+3+4+x=11
x=1
so E got 1 chocolate

IMO B should be correct ..

I am not sure why is answer given as C? when the solution to the question is coming from B...


By C option we can say that either of A,B,C distribution was between ( 4,3,2) and amongst D & E (1,1).. i think C would be correct option only if when the question would have asked us to find value for both D & E...

GMATinsight : sir could you please check why C is given as correct over option B..


Hello

Yes, the OA was written as C by mistake. The answer is indeed B.

And now OA has already been edited by Chetan.

Posted from my mobile device
User avatar
CrackverbalGMAT
User avatar
Major Poster
Joined: 03 Oct 2013
Last visit: 11 July 2025
Posts: 4,847
Own Kudos:
Given Kudos: 225
Affiliations: CrackVerbal
Location: India
Expert
Expert reply
Posts: 4,847
Kudos: 8,628
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello,

This problem involves using the minimization concept in a subtle way, but the core of the problem involves addition of positive integers, which is the main concept being tested here. So, as with most Data Sufficiency questions, it is always a good idea to try and figure out the concept/s which are being tested in the question, rather than just trying values.

This is a Data Sufficiency question which demands a definite value as an answer.

The data given in the question statement mentions that each of the 5 persons viz, A, B, C, D and E recieved at least 1 chocolate out of a total of 11 chocolates distributed among them. Hence, we can directly subtract 5 from 11 leaving us with 6 chocolates, which we can try and distribute among the 5 people in such a way as to answer the question.

Using statement I alone, we will not be able to say the exact value of E. As mentioned above, out of the 6 chocolates remaining, 3 can go to E and 3 can go to D. Therefore, E has 4 chocolates. Another combination is, out of the 6 chocolates, 2 can go to E and 2 can go to D (making their total 3) and the remaining 2 can be distributed in any way among the remaining 4 persons. This is evidence enough that, using the first statement alone, we will not be able to find a unique value of E.

Statement II alone - Each of A, B, C and D got distinct number of chocolates.

Let us approach this in a slightly different way. Since everyone has to get at least 1 chocolate, let us give E one chocolate. Now we are left with 10 chocolates, which have to be distributed among A, B C and D such that it satisfies the condition given in the second statement.

10 is an even number. When 4 numbers are added to get an even number as a result, the following combinations are possible

1) All 4 can be even
2) All 4 can be odd
3) 2 numbers can be odd and 2 numbers can be even

However, the first 2 combinations can be ruled out since the sum of the first four even numbers and the sum of the first four odd numbers will exceed 10. Therefore,

A + B + C + D = 10 can only be satisfied by substituting the values 1, 2, 3 and 4 in any order.

If E gets 2 chocolates (which he definitely can ),
then, A+ B + C + D = 9, for which the possible values could be 1,2,3,3 or 1,3,4,1 or 2,2,2,3 and so on. Hence, we see that, as the total gets smaller, some values are bound to repeat.

As such, we can safely say that the only combination of values that satisfies the conditions given in the question statement and statement II is (1,2,3,4). Hence, we can conclude that E gets 1 chocolate. Therefore, the second statement alone is sufficient to answer the question. So, answer option B.

A pertinent point to be noted is that, when you try to solve DS questions using values, you have to be able to back it up using concepts. If you can figure out the concept prior to plugging in values, there's nothing better, because then it means that you would not be plugging random values, but only those values that the concepts dictate.

Hope this helps!
Cheers,

CrackVerbal Academics Team
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 37,374
Own Kudos:
Posts: 37,374
Kudos: 1,010
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderator:
Math Expert
102634 posts