EgmatQuantExpert wrote:

Find the units digit of \(556^{17n} + 339^{5m+15n}\), where m and n are positive integers.

(1) \(4m+12n = 360\)

(2) n is the smallest 2-digit positive integer divisible by 5

\(\left\langle M \right\rangle \,\, = \,\,{\rm{units}}\,\,{\rm{digit}}\,\,{\rm{of}}\,\,M\)

\(\left\langle {{{556}^n}} \right\rangle = \left\langle {{6^n}} \right\rangle = 6\,\,,\,\,\forall n \ge 1\,\,{\mathop{\rm int}}\)

\(\left\langle {{{339}^k}} \right\rangle = \left\langle {{9^k}} \right\rangle = \left\{ \matrix{

\,\,9\,\,,\,\,\forall k \ge 1\,\,{\rm{odd}} \hfill \cr

\,\,1\,\,,\,\,\forall k \ge 2\,\,{\rm{even}} \hfill \cr} \right.\,\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\left\langle {{{339}^{5\left( {m + 3n} \right)}}} \right\rangle = \left\{ \matrix{

\,\,9\,\,,\,\,\forall \,m + 3n\,\, \ge \,\,5\,\,{\rm{odd}} \hfill \cr

\,\,1\,\,,\,\,\forall \,m + 3n\,\, \ge \,\,4\,\,{\rm{even}} \hfill \cr} \right.\,\,\,\,\,\,\,\,\,\,\left( {m,n\,\, \ge 1\,\,{\rm{ints}}} \right)\)

\(\left\langle {{{556}^{17n}} + {{339}^{5\left( {m + 3n} \right)}}} \right\rangle \,\,\, = \,\,\,\left\{ \matrix{

\,\,\left\langle {6 + 9} \right\rangle = 5\,\,,\,\,\forall \,m + 3n\,\, \ge \,\,5\,\,{\rm{odd}} \hfill \cr

\,\,\left\langle {6 + 1} \right\rangle = 7\,\,\,,\,\,\forall \,m + 3n\,\, \ge \,\,4\,\,{\rm{even}} \hfill \cr} \right.\,\,\,\,\,\,\,\,\,\,\left( {m,n\,\, \ge 1\,\,{\rm{ints}}} \right)\)

\(?\,\, = \left\langle {{{556}^{17n}} + {{339}^{5\left( {m + 3n} \right)}}} \right\rangle \,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\,\,\,?\,\,\,:\,\,\,m + 3n\,\,\,{\rm{odd/even}}\,\,\,\,\,\,\,\,\,\,\left[ {\,m,n\,\, \ge 1\,\,{\rm{ints}}\,} \right]\,\)

\(\left( 1 \right)\,\,\,4m + 12n = 360\,\,\,\,\, \Rightarrow \,\,\,\,m + 3n = 90\,\,\left( {{\rm{even}}} \right)\,\,\,\,\,\, \Rightarrow \,\,\,\,\,{\rm{SUFF}}.\,\,\,\,\,\,\,\left( {? = 7} \right)\)

\(\left( 2 \right)\,\,n = 10\,\,\,\left\{ \matrix{

\,{\rm{Take}}\,\,m = 1\,\,\,\, \Rightarrow \,\,\,\,m + 3n = 31\,\,\left( {{\rm{odd}}} \right)\,\,\,\,\,\, \Rightarrow \,\,\,\,\,? = 5\,\, \hfill \cr

\,{\rm{Take}}\,\,m = 2\,\,\,\, \Rightarrow \,\,\,\,m + 3n = 32\,\,\left( {{\rm{even}}} \right)\,\,\,\, \Rightarrow \,\,\,\,\,? = 7\,\, \hfill \cr} \right.\)

This solution follows the notations and rationale taught in the GMATH method.

Regards,

Fabio.

_________________

Fabio Skilnik :: GMATH method creator (Math for the GMAT)

Our high-level "quant" preparation starts here: https://gmath.net