emmak
For positive integer m, the m-th heptagonal number is given by the formula (5m2 – 3m)/2. For positive integer n, the n-th triangular number is the sum of the first n positive integers. Which of the following is true for k, the smallest triangular number that is also heptagonal?
(A) 33 ≤ k ≤ 40
(B) 41 ≤ k ≤ 48
(C) 49 ≤ k ≤ 56
(D) 57 ≤ k ≤ 64
(E) 65 ≤ k ≤ 72
Express appreciation by pressing KUDOS.
If m = 1, then the heptagonal number is (5*1^2 – 3×1)/2 = (5 – 3)/2 = 1.
If m = 2, then the heptagonal number is (5*2^2 – 3×2)/2 = (20 – 6)/2 = 14/2 = 7.
If m = 3, then the heptagonal number is (5*3^2 – 3×3)/2 = (45 – 9)/2 = 36/2 = 18.
If m = 4, then the heptagonal number is (5*4^2 – 3×4)/2 = (80 – 12)/2 = 68/2 = 34.
If m = 5, then the heptagonal number is (5*5^2 – 3×5)/2 = (125 – 15)/2 = 110/2 = 55.
If m = 6, then the heptagonal number is (5*6^2 – 3×6)/2 = (180 – 18)/2 = 162/2 = 81.
Using n*(n+1)/2
if n =1, triangle number is 1
if n =2, triangle number is 3
if n =3 triangle number is 6
if n =4, triangle number is 10
if n =5, triangle number is 15
if n =6 triangle number is 21
if n=7, triangle number is 28
if n = 8, triangle number is 36
if n =9, triangle number is 45
if n = 10 triangle is 55.....stop...
We have 55 as the answer.
the target number must be 34 or 55, A or C now.
Now we need to find the smallest value which will exist for both triangle and heptagonal