GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 14 Oct 2019, 01:18 GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  Fractions : Faster calculation

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

Hide Tags

Intern  Joined: 30 Jul 2010
Posts: 9
Fractions : Faster calculation  [#permalink]

Show Tags

4
11
1.Fractions - Comparing two fractions

Simple way to compare two fractions

$$\frac{45}{77}$$ and $$\frac{63}{52}$$

Cross multiple ==> $$45*52 < 63*77$$. Hence $$\frac{45}{77} < \frac{63}{52}$$

2. Fractions - finding highest/least value among multiple fractions with consistent pattern.

LEGEND
N= Numerator
D=Denominator
a= increase in numerator
b= increase in denominator

1. If N and D increased by constants value as the sequence of fractions progresses and if increase in numerator greater than or equal to increase in denominator then the last fraction is greatest among all given fractions.

EX: Which of the following fractions is greatest?
$$\frac{19}{24}$$, $$\frac{28}{27}$$, $$\frac{10}{21}$$,$$\frac{1}{18}$$

Solution:
Re-writing the list to apply the above formula. $$\frac{1}{18}$$, $$\frac{10}{21}$$, $$\frac{19}{24}$$,$$\frac{28}{27}$$
After clear observation we can find that the in above fractions both N and D are increased by constant values. i.e, N is incremented by 9 and D is incremented by 3. Clearly $$9>3$$

Hence 28/27 is the greatest value among the given fractions. It's pretty straight forward and can deduce the solution in seconds with clear observation.

Genralizing the formula:

$$\frac{x}{y}$$, $$\frac{x+a}{y+b}$$, $$\frac{x+2a}{y+2b}$$,$$\frac{x+3a}{y+3b}$$...$$\frac{x+na}{y+nb}$$
Then $$\frac{x+na}{y+nb}$$ is greatest among all given fractions.

1. Both numerator and denominator increase in constant values.(Numerator by a, denominator by b)
2. ($$a>=b$$)

what if $$a<b$$

Rule 2:

If a<b,
Then compare $$\frac{a}{b}$$ to first fraction of the list i.e$$\frac{x}{y}$$

1. If $$\frac{a}{b} > \frac{x}{y}$$

Then the last fraction is greatest . i.e $$\frac{x+na}{y+nb}$$

2. If $$\frac{a}{b} < \frac{x}{y}$$
Then the last fraction is least among all . i.e $$\frac{x+na}{y+nb}$$

3. If $$\frac{a}{b} = \frac{x}{y}$$
Then all fractions are equal.

EX: Rule 2. Type#1. Which of the following fractions is greatest?
$$\frac{4}{39}$$, $$\frac{2}{25}$$, $$\frac{3}{32}$$,$$\frac{1}{18}$$

Solution:
Re-writing the list to apply the above formula. $$\frac{1}{18}$$, $$\frac{2}{25}$$, $$\frac{3}{32}$$,$$\frac{4}{39}$$
After clear observation we can find that the in above fractions both N and D are increased by constant values. i.e, N is incremented by 1 and D is incremented by 7.

1. N increased by 1 and D increase by 7 ($$1<7$$) i.e $$a<b$$
2. compare $$a<b$$ with first fraction $$1/18$$ . This will give us $$1/7 >1/18$$

Hence the last fraction is greatest.

EX: Rule 2. Type#2. Which of the following fractions is least?
$$\frac{105}{401}$$, $$\frac{100}{301}$$, $$\frac{95}{201}$$,$$\frac{90}{101}$$

Re-writing the list to apply the above formula. $$\frac{90}{101}$$, $$\frac{95}{201}$$, $$\frac{100}{301}$$,$$\frac{105}{401}$$

a=5 and b=100
compare $$\frac{a}{b}$$ i.e, $$\frac{1}{20}$$ with first fraction i.e, $$\frac{90}{101}$$. Clearly $$\frac{1}{20}<\frac{90}{101}$$
Hence the last fraction in the sequence is the least value. i.e, $$\frac{105}{401}$$ is least among all.
Manager  Joined: 23 Oct 2014
Posts: 85
Concentration: Marketing
Re: Fractions : Faster calculation  [#permalink]

Show Tags

Thank you. This was enlightening.
Intern  Joined: 14 Feb 2019
Posts: 2
Re: Fractions : Faster calculation  [#permalink]

Show Tags

great. It is very healpful Re: Fractions : Faster calculation   [#permalink] 01 Mar 2019, 00:37
Display posts from previous: Sort by

Fractions : Faster calculation

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne  