February 21, 2019 February 21, 2019 10:00 PM PST 11:00 PM PST Kick off your 2019 GMAT prep with a free 7day boot camp that includes free online lessons, webinars, and a full GMAT course access. Limited for the first 99 registrants! Feb. 21st until the 27th. February 23, 2019 February 23, 2019 07:00 AM PST 09:00 AM PST Learn reading strategies that can help even nonvoracious reader to master GMAT RC. Saturday, February 23rd at 7 AM PT
Author 
Message 
TAGS:

Hide Tags

Intern
Joined: 20 Apr 2018
Posts: 9

How many 4 digit numbers can be formed using the digits 1,2,5,6,8 and
[#permalink]
Show Tags
Updated on: 27 May 2018, 03:27
Question Stats:
56% (02:16) correct 44% (02:13) wrong based on 122 sessions
HideShow timer Statistics
How many 4 digit numbers can be formed using the digits 1, 2, 5, 6, 8 and 9 without repetition, so that 2 and 5 never come together ? A. 120 B. 180 C. 288 D. 360 E. 720
Official Answer and Stats are available only to registered users. Register/ Login.
Originally posted by failatmath on 27 May 2018, 03:21.
Last edited by Bunuel on 27 May 2018, 03:27, edited 1 time in total.
Renamed the topic and edited the question.



examPAL Representative
Joined: 07 Dec 2017
Posts: 890

Re: How many 4 digit numbers can be formed using the digits 1,2,5,6,8 and
[#permalink]
Show Tags
27 May 2018, 04:30
failatmath wrote: How many 4 digit numbers can be formed using the digits 1, 2, 5, 6, 8 and 9 without repetition, so that 2 and 5 never come together ?
A. 120 B. 180 C. 288 D. 360 E. 720 Problems that ask us to arrange objects under specific constraints can often be split into smaller, simpler problems. We'll look for such a division, a Logical approach. We'll split into cases: If we form a number without 2 and without 5, then we must use the numbers 1,6,8,9. This gives 4! = 24 options. If we pick only one of 2,5 and another 3 of the remaining numbers this gives 2C1 * 4C3 = 8 options. This gives 8 * 4! = 192 arrangements (all of which are good as 2,5 are not together) If we pick 2, 5, and another 2 of the remaining numbers this gives 2C2 * 4C2 = 6 options. How many 'bad' options, that is options such that 2 and 5 are together, are there? 3! * 2: 25xy, 25yx, x25y, y25x, xy25, yx25 and all of these with the numbers 2,5 reversed. This is essentially arranging 3 objects: x,y, and a '25' clump. So  we have (4!  3!*2) = 12 arrangements per option times 6 options giving 72 arrangements. 24 + 192 + 72 = 288 (C) is our answer.
_________________
Sign up for 7day free trial



Senior PS Moderator
Joined: 26 Feb 2016
Posts: 3340
Location: India
GPA: 3.12

How many 4 digit numbers can be formed using the digits 1,2,5,6,8 and
[#permalink]
Show Tags
27 May 2018, 04:57
failatmath wrote: How many 4 digit numbers can be formed using the digits 1, 2, 5, 6, 8 and 9 without repetition, so that 2 and 5 never come together ?
A. 120 B. 180 C. 288 D. 360 E. 720 Since there are 6 digits and we have to form a 4digit number, there are \(C_4^6 = 15\) possibilities. The 4 digits can be arranged in \(4!\) or \(24\) ways. The total number of 4 digit numbers possible without repetition are \(15*24 = 360\). The remaining two digits of the 4digit number(where digits 2 and 5 are together) can be found in \(C_2^4 = 6\) ways. There are \(3!*2(12)\) ways of arranging these 4 digits. We multiply the total number of arrangements by 2 is because 25 is different from 52.
The total number of 4 digit numbers possible such that 2 and 5 are together are \(6*6*2 = 72\). Therefore, there are 360  72 = 288(Option C) numbers possible such that 2 and 5 don't come together.
_________________
You've got what it takes, but it will take everything you've got



Manager
Joined: 08 Sep 2016
Posts: 114

Re: How many 4 digit numbers can be formed using the digits 1,2,5,6,8 and
[#permalink]
Show Tags
28 May 2018, 05:39
Total numbers = 6 . (1,2,5,6,8,9)
Total ways = 6*5*4*3 = 360 . (any 6 numbers can take the first slot, any 5 in the second slot ...)
Restriction  2 and 5 can't be placed right next to each other.
X= 2 Y= 5
First scenario: XY43 = 1*1*4*3 = 12 . Multiply it by 2 since X and Y can switch positions too. = 24 Second scenario: 4XY3 = 4*1*1*3 = 12 Multiply it by 2 since X and Y can switch positions too. = 24 Third scenario: 43XY = 4*3*1*1 = 12 . Multiply it by 2 since X and Y can switch positions too. = 24
Total  unwanted = 360 24 24  24 = 288
Option C



Intern
Joined: 08 May 2018
Posts: 5

Re: How many 4 digit numbers can be formed using the digits 1, 2, 5, 6, 8
[#permalink]
Show Tags
06 Jun 2018, 21:11
There are 6 digits in total and we have to form a 4 digit number, hence that can be done in 6p4 ways. The total number of 4 digit numbers possible without repetition are 6!/2!=360.
Numbers where 6 and one another number are together can be found out as 4c2 (because out of 6 digits ,2 are always together,remaining digits =4)
4c2=6 ways Also digits can themselves be arranged in 3! ways =6. And 6 and other number can be arranged amongst themselves,so total nuber of ways become 2(6*6)=72.
hence total ways =36072=288 c is the answer.



Senior PS Moderator
Joined: 26 Feb 2016
Posts: 3340
Location: India
GPA: 3.12

Re: How many 4 digit numbers can be formed using the digits 1, 2, 5, 6, 8
[#permalink]
Show Tags
08 Jun 2018, 01:37
GMATSkilled wrote: How many 4 digit numbers can be formed using the digits 1, 2, 5, 6, 8 & 9, without repetition, so that 2 & % are not together?
A. 120
B. 180
C. 288
D. 360
E. 720 We need to form a 4 digit number(with 6 digits available). There are \(C_4^6 = 15\) ways of choosing the digits. There are 4! or 24 ways of arranging these digits. The 4 digit numbers possible are \(24*15 = 360\). Possibilities of numbers with 2 and 5 togetherThere are \(C_2^4 = 6\) ways of choosing the other 2 digits and \(3! = 6\) ways of arranging the digits. 2 and 5 can be arranged ways: ways : as 25 and as 52. The 4 digit numbers possible are \(2*6*6 = 72\). Therefore, the 4 digit numbers possible when the digits 2 and 5 are not together are 360  72 = 288(Option C)GMATSkilled  I believe there is a typo in this question. Can you please edit it?
_________________
You've got what it takes, but it will take everything you've got



SVP
Joined: 18 Aug 2017
Posts: 1923
Location: India
Concentration: Sustainability, Marketing
GPA: 4
WE: Marketing (Energy and Utilities)

Re: How many 4 digit numbers can be formed using the digits 1,2,5,6,8 and
[#permalink]
Show Tags
21 Jan 2019, 06:52
failatmath wrote: How many 4 digit numbers can be formed using the digits 1, 2, 5, 6, 8 and 9 without repetition, so that 2 and 5 never come together ?
A. 120 B. 180 C. 288 D. 360 E. 720 total digits = 6 6*4*4*3 288 IMO C
_________________
If you liked my solution then please give Kudos. Kudos encourage active discussions.



Intern
Joined: 27 Nov 2018
Posts: 23

Re: How many 4 digit numbers can be formed using the digits 1,2,5,6,8 and
[#permalink]
Show Tags
21 Jan 2019, 10:42
Total  restrictions 6P44P2 * 3! = 36072=288



Intern
Joined: 17 Jun 2017
Posts: 37

How many 4 digit numbers can be formed using the digits 1,2,5,6,8 and
[#permalink]
Show Tags
21 Jan 2019, 21:53
pushpitkc wrote: GMATSkilled wrote: How many 4 digit numbers can be formed using the digits 1, 2, 5, 6, 8 & 9, without repetition, so that 2 & % are not together?
A. 120
B. 180
C. 288
D. 360
E. 720 We need to form a 4 digit number(with 6 digits available). There are \(C_4^6 = 15\) ways of choosing the digits. There are 4! or 24 ways of arranging these digits. The 4 digit numbers possible are \(24*15 = 360\). Possibilities of numbers with 2 and 5 togetherThere are \(C_2^4 = 6\) ways of choosing the other 2 digits and \(3! = 6\) ways of arranging the digits. 2 and 5 can be arranged ways: ways : as 25 and as 52. The 4 digit numbers possible are \(2*6*6 = 72\). Therefore, the 4 digit numbers possible when the digits 2 and 5 are not together are 360  72 = 288(Option C)GMATSkilled  I believe there is a typo in this question. Can you please edit it? Can you please explain this step 3!=6 ways of arranging the digits. ? why did we consider 3! again ?? Thanks in advance.



Manager
Joined: 28 Jun 2018
Posts: 74

Re: How many 4 digit numbers can be formed using the digits 1,2,5,6,8 and
[#permalink]
Show Tags
22 Jan 2019, 00:43
Bunuel could you break this down please? Thank you



Intern
Joined: 04 Oct 2016
Posts: 17

How many 4 digit numbers can be formed using the digits 1,2,5,6,8 and
[#permalink]
Show Tags
25 Jan 2019, 22:35
All answers are good. But, I am unable to find what is wrong with the below method of finding the number of ways 2 and 5 are together.
    4 3 2 5
Since, 2 and 5 are fixed in a position, rest 2 positions (62) can be 4*3 =12. And the 2 numbers (2 and 5) can be arranged among themselves in 2! ways => 12*2=24
Please advise what else am I missing here.



VP
Joined: 09 Mar 2018
Posts: 1001
Location: India

Re: How many 4 digit numbers can be formed using the digits 1,2,5,6,8 and
[#permalink]
Show Tags
25 Jan 2019, 22:52
mischiefmanaged wrote: All answers are good. But, I am unable to find what is wrong with the below method of finding the number of ways 2 and 5 are together.
    4 3 2 5
Since, 2 and 5 are fixed in a position, rest 2 positions (62) can be 4*3 =12. And the 2 numbers (2 and 5) can be arranged among themselves in 2! ways => 12*2=24
Please advise what else am I missing here. Even i solved the same way, Inline is the approach 25 when the are together, it should be 12*3= 36 and not 12*2 2 5   ,  2 5  ,   25, not these can be filled in 36 way 2 5 can be 5 2, 36 ways will become 72 ways 360  72 ways will give you 288 ways Let me know if this helps you or not.
_________________
If you notice any discrepancy in my reasoning, please let me know. Lets improve together.
Quote which i can relate to. Many of life's failures happen with people who do not realize how close they were to success when they gave up.



Intern
Joined: 04 Oct 2016
Posts: 17

Re: How many 4 digit numbers can be formed using the digits 1,2,5,6,8 and
[#permalink]
Show Tags
27 Jan 2019, 18:16
KanishkM wrote: mischiefmanaged wrote: All answers are good. But, I am unable to find what is wrong with the below method of finding the number of ways 2 and 5 are together.
    4 3 2 5
Since, 2 and 5 are fixed in a position, rest 2 positions (62) can be 4*3 =12. And the 2 numbers (2 and 5) can be arranged among themselves in 2! ways => 12*2=24
Please advise what else am I missing here. Even i solved the same way, Inline is the approach 25 when the are together, it should be 12*3= 36 and not 12*2 2 5   ,  2 5  ,   25, not these can be filled in 36 way 2 5 can be 5 2, 36 ways will become 72 ways 360  72 ways will give you 288 ways Let me know if this helps you or not. Yes, it did! Thank you very much.




Re: How many 4 digit numbers can be formed using the digits 1,2,5,6,8 and
[#permalink]
27 Jan 2019, 18:16






