GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 16 Oct 2019, 00:14 GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  How many integers are divisible by 3 between 10! and 10! + 20 inclusiv

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

Hide Tags

SVP  Joined: 29 Mar 2007
Posts: 2017
How many integers are divisible by 3 between 10! and 10! + 20 inclusiv  [#permalink]

Show Tags

1
30 00:00

Difficulty:   55% (hard)

Question Stats: 55% (01:21) correct 45% (01:21) wrong based on 649 sessions

HideShow timer Statistics

How many integers are divisible by 3 between 10! and 10! + 20 inclusive?

A. 6
B. 7
C. 8
D. 9
E. 10

M25-02
Math Expert V
Joined: 02 Sep 2009
Posts: 58364
Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv  [#permalink]

Show Tags

2
14
GMATBLACKBELT wrote:
How many integers are divisible by 3 between 10! and 10! + 20 inclusive?

A. 6
B. 7
C. 8
D. 9
E. 10

M25-02

Since 10! itself is a multiple of 3 (10!=2*3*...*10), then the question boils down to: how many integers from some multiple of 3 to that multiple of 3 + 20, inclusive are divisible by 3?

Or: how many integers are divisible by 3 from 0 to 20, inclusive?

# of multiples of $$x$$ in the range $$= \frac{\text{Last multiple of x in the range - First multiple of x in the range}}{x}+1$$.

So, $$\frac{18-0}{3}+1=7$$.

_________________
General Discussion
Manager  Joined: 02 Aug 2007
Posts: 116
Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv  [#permalink]

Show Tags

Here's how I would approach this one:
(10! + 20) - 10! = 20 total integers

Since 10! doesn't include the integer 0, there are 20 integers possible. So 20 / 3 = 6 2/3 or 6 integers.

A. 6
SVP  Joined: 29 Mar 2007
Posts: 2017
Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv  [#permalink]

Show Tags

yuefei wrote:
Here's how I would approach this one:
(10! + 20) - 10! = 20 total integers

Since 10! doesn't include the integer 0, there are 20 integers possible. So 20 / 3 = 6 2/3 or 6 integers.

A. 6

I said 6 too. This is a challenges problem, but I think the answer 7 is incorrect.

it says between 10! and 10! +20, so im guessin its a mistake.
Manager  Joined: 02 Oct 2007
Posts: 92
Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv  [#permalink]

Show Tags

B - 7

10! is divisible by 3 - The way I look Factorials is that any number included will also be divisible by the product. 10,9,8,7,6,5,4,3,2,1 are all divisors of 10!

There are 6 numbers between 10! and 10!+20 that are divisible by 3.

Hence 7
SVP  Joined: 29 Mar 2007
Posts: 2017
Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv  [#permalink]

Show Tags

1
JDMBA wrote:
B - 7

10! is divisible by 3 - The way I look Factorials is that any number included will also be divisible by the product. 10,9,8,7,6,5,4,3,2,1 are all divisors of 10!

There are 6 numbers between 10! and 10!+20 that are divisible by 3.

Hence 7

Im just not getting this problem.

I know 10! is divisible by 3. U can just add up the digits of 10! and see that its divisible by 3. But...

it says the numbers between 10! and 10! +20, why are we including 10!??????

Originally posted by GMATBLACKBELT on 16 Oct 2007, 11:11.
Last edited by GMATBLACKBELT on 16 Oct 2007, 11:14, edited 1 time in total.
SVP  Joined: 29 Mar 2007
Posts: 2017
Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv  [#permalink]

Show Tags

OlgaN wrote:
GMATBLACKBELT wrote:
yuefei wrote:
The question says "Inclusive"

Bah

Look, it is very simple. Try this: how many numbers from 1 to 100 inclusive? Not 100-1=99 NO NO NO It is 100-99+1=100. What is 1 here? It is the fist number in your question : 10!. You must count it if it is divisible by 3.

Do not be upset. I have known this only yesterday. My tutor explained it to me.

Thx, I get it, I just hate that I missed the "inclusive" part.

Like a problem the other day i did from MGMAT.

http://www.gmatclub.com/forum/t53866

For some reason my brain was saying .9^2 is already multplied by itself, you dont have to do .9^2*.9^2. I hate it when I get like this, my mind refuses to look at the obvious =(
Senior Manager  Status: Math is psycho-logical
Joined: 07 Apr 2014
Posts: 403
Location: Netherlands
GMAT Date: 02-11-2015
WE: Psychology and Counseling (Other)
Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv  [#permalink]

Show Tags

There are a few things I don't understand with this question.

1) If 10! is 1x2x3x4x5x6x7x8x9x10, then why does it count only once (namely as a number 10!), as divisible by 3? So, I knew that 10! is divisible by 3, but I thought we needed to account for all the factors of 10! that are divisble by 3.

For example, 3,6,9 are divisible by 3. Also, 3*4=12, is also divisible by 3. Or 5x3=15 is also divisible by 3. This is why I was lost, because then there are numerous numbers that we can create that are divisible by 3.

But I guess the question clearly states that 10! is a number and I shouldn't have thought of it like 1x2x3x4x5x6x7x8x9x10. Right?

2) "There are 6 numbers between 10! and 10!+20 that are divisible by 3". Which numbers are those? How did you know what 10! is? Or you knew that it would end with 0, so the numbers that are divisible by 3 between 0 and 20 are 6 (3,6,9,12,15,18).

Thanx!
EMPOWERgmat Instructor V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 15262
Location: United States (CA)
GMAT 1: 800 Q51 V49 GRE 1: Q170 V170 Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv  [#permalink]

Show Tags

6
4
Hi All,

This question is ultimately about "factoring" and why numbers divide evenly into other numbers.

I'm going to start with a simple example and work up to the details in this prompt:

You probably know that 3 divides evenly into 3! (3! = 1x2x3). We can factor out a 3 and get 3(2); mathematically, this means that 3 divides evenly into 3!

The same applies to 4! (4! = 1x2x3x4). We can factor out a 3 and get 3(1x2x4); so this means that 3 divides evenly into 4! In this same way, we know that 3 divides evenly into 5!, 6!, 7!, etc. We now know that 3 divides evenly into 10!.

Does 3 divide into 3! + 1? No, because you CAN'T factor out a 3.
Does 3 divide into 3! + 2? No, because you CAN'T factor out a 3.
Does 3 divide into 3! + 3? YES, because you CAN factor out a 3. You'd have 3(1x2 + 1).

This same rule applies to the range of values between 10! and 10! + 20

3 will divide evenly into:
10!
10! + 3
10! + 6
10! + 9
10! + 12
10! + 15
10! + 18

GMAT assassins aren't born, they're made,
Rich
_________________
VP  D
Joined: 05 Mar 2015
Posts: 1012
Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv  [#permalink]

Show Tags

[quote="EMPOWERgmatRichC"]Hi All,

This question is ultimately about "factoring" and why numbers divide evenly into other numbers.

I'm going to start with a simple example and work up to the details in this prompt:

You probably know that 3 divides evenly into 3! (3! = 1x2x3). We can factor out a 3 and get 3(2); mathematically, this means that 3 divides evenly into 3!

The same applies to 4! (4! = 1x2x3x4). We can factor out a 3 and get 3(1x2x4); so this means that 3 divides evenly into 4! In this same way, we know that 3 divides evenly into 5!, 6!, 7!, etc. We now know that 3 divides evenly into 10!.

Does 3 divide into 3! + 1? No, because you CAN'T factor out a 3.
Does 3 divide into 3! + 2? No, because you CAN'T factor out a 3.
Does 3 divide into 3! + 3? YES, because you CAN factor out a 3. You'd have 3(1x2 + 1).

This same rule applies to the range of values between 10! and 10! + 20

3 will divide evenly into:
10!
10! + 3
10! + 6
10! + 9
10! + 12
10! + 15
10! + 18

but don't we r getting 2 3's in (10! + 9) as 3^2(1*2*4*5*2*7.....+1) ?? EMPOWERgmat Instructor V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 15262
Location: United States (CA)
GMAT 1: 800 Q51 V49 GRE 1: Q170 V170 Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv  [#permalink]

Show Tags

Hi rohit8865,

Yes, some of the terms COULD end up factoring out 3^2, but we're not asked to do THAT math - we're just asked how many of the terms are divisible by 3. Each of the 7 numbers in the list are divisible by 3.

GMAT assassins aren't born, they're made,
Rich
_________________
Current Student D
Joined: 12 Aug 2015
Posts: 2569
Schools: Boston U '20 (M)
GRE 1: Q169 V154 Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv  [#permalink]

Show Tags

Nice Question
Here the rule i used is Multiple +Multiple = Multiple
hence 10!,10!+{3,6,9,12,15,18} are divisible by 3
hence B
_________________
Director  S
Joined: 17 Dec 2012
Posts: 626
Location: India
Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv  [#permalink]

Show Tags

1
GMATBLACKBELT wrote:
How many integers are divisible by 3 between 10! and 10! + 20 inclusive?

A. 6
B. 7
C. 8
D. 9
E. 10

M25-02

Since the question says inclusive , one has to first figure out whether 10! and 10!+20 are divisible by 3. We know that 10! is divisible by 3 and so 10! + 20 cannot be divisible by 3. Between them there are 6 numbers that are divisible by 3. So a total of 7.
_________________
Srinivasan Vaidyaraman
Sravna Test Prep
http://www.sravnatestprep.com

Holistic and Systematic Approach
GMAT Club Legend  V
Joined: 12 Sep 2015
Posts: 4003
Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv  [#permalink]

Show Tags

Top Contributor
GMATBLACKBELT wrote:
How many integers are divisible by 3 between 10! and 10! + 20 inclusive?

A. 6
B. 7
C. 8
D. 9
E. 10

There's a nice rule that says: If M is divisible by k, and N is divisible by k, then (M + N) is divisible by k.
Conversely, If M is divisible by k, and Q is NOT divisible by k, then (M + Q) is NOT divisible by k.

First, since 10! = (10)(9)(8)..(3)(2)(1), we know that 10! is divisible by 3.

So, by the above rule, we know that 10! + 3 is divisible by 3
And 10! + 6 is divisible by 3
10! + 9 is divisible by 3
10! + 12 is divisible by 3
10! + 15 is divisible by 3
10! + 18 is divisible by 3

So, there are 7 integers from 10! to 10! + 20 inclusive that are divisible by 3.

Cheers,
Brent
_________________
Manager  B
Joined: 29 Jul 2018
Posts: 104
Concentration: Finance, Statistics
GMAT 1: 620 Q45 V31 Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv  [#permalink]

Show Tags

since 10! is divisible by 3 between 10!---10!+20 there wil be 10!,10!+3...10!+18 total 7
Intern  B
Joined: 07 Oct 2018
Posts: 5
GMAT 1: 720 Q51 V37 Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv  [#permalink]

Show Tags

Bunuel wrote:
GMATBLACKBELT wrote:
How many integers are divisible by 3 between 10! and 10! + 20 inclusive?

A. 6
B. 7
C. 8
D. 9
E. 10

M25-02

Since 10! itself is a multiple of 3 (10!=2*3*...*10), then the question boils down to: how many integers from some multiple of 3 to that multiple of 3 + 20, inclusive are divisible by 3?

Or: how many integers are divisible by 3 from 0 to 20, inclusive?

# of multiples of $$x$$ in the range $$= \frac{\text{Last multiple of x in the range - First multiple of x in the range}}{x}+1$$.

So, $$\frac{18-0}{3}+1=7$$.

Hi Bunuel,

I have kind of stupid question :D does between mean inclusive or not? (ex. between 1 and 10 is 1<x<10 or 1<=X<=10) Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv   [#permalink] 24 Nov 2018, 06:59
Display posts from previous: Sort by

How many integers are divisible by 3 between 10! and 10! + 20 inclusiv

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne  