GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 19 Jun 2018, 11:28

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

How many multiples of 4 are there between 12 and 96, inclusive?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

4 KUDOS received
Manager
Manager
avatar
Joined: 28 Oct 2009
Posts: 87
How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 26 May 2010, 12:21
4
27
00:00
A
B
C
D
E

Difficulty:

  5% (low)

Question Stats:

78% (00:23) correct 22% (00:37) wrong based on 1239 sessions

HideShow timer Statistics

How many multiples of 4 are there between 12 and 96, inclusive?

A. 21
B. 22
C. 23
D. 24
E. 25
3 KUDOS received
VP
VP
avatar
Joined: 05 Mar 2008
Posts: 1427
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 26 May 2010, 12:37
3
1
2
marcusaurelius wrote:
How many multiples of 4 are there between 12 and 96, inclusive?

21
22
23
24
25

My answer was 21 and that's incorrect.


12 is the 3rd multiple of 4
96 is the 24th multiple of 4
24-3+1 = 22
1 KUDOS received
Senior Manager
Senior Manager
User avatar
Joined: 19 Nov 2009
Posts: 269
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 26 May 2010, 12:39
1
1
22

multiples of 4 between 12 and 96 inclusive.

from 4 * 3 upto 4 *24, (3,4,...,24). Hence, 22 multiples !
_________________

"Success is going from failure to failure without a loss of enthusiam." - Winston Churchill

As vs Like - Check this link : http://www.grammar-quizzes.com/like-as.html.

Expert Post
58 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 46167
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 26 May 2010, 12:55
58
76
marcusaurelius wrote:
How many multiples of 4 are there between 12 and 96, inclusive?

21
22
23
24
25

My answer was 21 and that's incorrect.


\(# \ of \ multiples \ of \ x \ in \ the \ range = \frac{Last \ multiple \ of \ x \ in \ the \ range \ - \ First \ multiple \ of \ x \ in \ the \ range}{x}+1\).

In the original case: \(\frac{96-12}{4}+1=22\).

If the question were: how many multiples of 5 are there between -7 and 35, not inclusive?

Last multiple of 5 IN the range is 30;
First multiple of 5 IN the range is -5;

\(\frac{30-(-5)}{5}+1=8\).

OR:
How many multiples of 7 are there between -28 and -1, not inclusive?
Last multiple of 7 IN the range is -7;
First multiple of 7 IN the range is -21;

\(\frac{-7-(-21)}{7}+1=3\).

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

2 KUDOS received
Manager
Manager
avatar
Joined: 27 Jul 2010
Posts: 172
Location: Prague
Schools: University of Economics Prague
GMAT ToolKit User
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 02 Feb 2011, 04:20
2
Thanks Bunuel. One day, after my GMAT is over, and that day will come soon, you should bake a cake for you :)
_________________

You want somethin', go get it. Period!

Senior Manager
Senior Manager
avatar
Joined: 28 Jul 2011
Posts: 412
Location: United States
Concentration: International Business, General Management
GPA: 3.86
WE: Accounting (Commercial Banking)
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 08 Jan 2012, 18:49
1
Bunuel wrote:
marcusaurelius wrote:
How many multiples of 4 are there between 12 and 96, inclusive?

21
22
23
24
25

My answer was 21 and that's incorrect.


\(# \ of \ multiples \ of \ x \ in \ the \ range = \frac{Last \ multiple \ of \ x \ in \ the \ range \ - \ First \ multiple \ of \ x \ in \ the \ range}{x}+1\).

In the original case: \(\frac{96-12}{4}+1=22\).

If the question were: how many multiples of 5 are there between -7 and 35, not inclusive?

Last multiple of 5 IN the range is 30;
First multiple of 5 IN the range is -5;

\(\frac{30-(-5)}{5}+1=8\).

OR:
How many multiples of 7 are there between -28 and -1, not inclusive?
Last multiple of 7 IN the range is -7;
First multiple of 7 IN the range is -21;

\(\frac{-7-(-21)}{7}+1=3\).

Hope it helps.


I have one concern regarding this How many multiples and how many integers?

How many of the three-digit numbers are divisible by 7?

Generally we do--->999-100= 899

so 899/7=128 so we need to include both digits so we add 1 to total so it is 128+1

but the answer is only 128,How is that possible?????

As per our knowledge we know that


->If the question says both inclusive we add +1 at the last, For eg

How many of the three-digit numbers are divisible by 7?

Generally we do--->999-100= 899

so 899/7=128 so we need to include both digits so we add 1 to total so it is 128+1

->If the question says both not inclusive we add -1 at the last, For eg

How many of the three-digit numbers are divisible by 7?

Generally we do--->999-100= 899

so 899/7=128 so we need to include both digits so we add 1 to total so it is 128-1

->If the question says one inclusive we only subtract two extremes, for Eg

How many of the three-digit numbers are divisible by 7?

Generally we do--->999-100= 899

so 899/7=128, so 128 is the answer.....

Anything wrong with my concept???????Please explain i am totally confused with this...............

If anything wrong,please explain how to with these kind of problems, Like How many integers between two numbers? and How many integers between two multiples?
_________________

+1 Kudos If found helpful..

Manager
Manager
User avatar
Joined: 29 Jul 2011
Posts: 98
Location: United States
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 08 Jan 2012, 19:07
You forgot to add 1. It goes like this - (96-12)/4 + 1 = 22
_________________

I am the master of my fate. I am the captain of my soul.
Please consider giving +1 Kudos if deserved!

DS - If negative answer only, still sufficient. No need to find exact solution.
PS - Always look at the answers first
CR - Read the question stem first, hunt for conclusion
SC - Meaning first, Grammar second
RC - Mentally connect paragraphs as you proceed. Short = 2min, Long = 3-4 min

1 KUDOS received
Intern
Intern
User avatar
Joined: 21 Jan 2012
Posts: 16
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 03 Sep 2012, 16:33
1
1
marcusaurelius wrote:
I have one concern regarding this How many multiples and how many integers?

How many of the three-digit numbers are divisible by 7?

Generally we do--->999-100= 899

so 899/7=128 so we need to include both digits so we add 1 to total so it is 128+1

but the answer is only 128,How is that possible?????

As per our knowledge we know that


->If the question says both inclusive we add +1 at the last, For eg

How many of the three-digit numbers are divisible by 7?

Generally we do--->999-100= 899

so 899/7=128 so we need to include both digits so we add 1 to total so it is 128+1

->If the question says both not inclusive we add -1 at the last, For eg

How many of the three-digit numbers are divisible by 7?

Generally we do--->999-100= 899

so 899/7=128 so we need to include both digits so we add 1 to total so it is 128-1

->If the question says one inclusive we only subtract two extremes, for Eg

How many of the three-digit numbers are divisible by 7?

Generally we do--->999-100= 899

so 899/7=128, so 128 is the answer.....

Anything wrong with my concept???????Please explain i am totally confused with this...............

If anything wrong,please explain how to with these kind of problems, Like How many integers between two numbers? and How many integers between two multiples?




three digit numbers divisible by 7 or multiples of 7 are from 105 to 994. Now if u do (994-105)/7 + 1 { as both are inclusive } you get 127 + 1 = 128 as the answer...


the problem in your approach is that neither 100 nor 999 are multiples of 7 and hence you need to solve (999-100)/7 with both NOT INCLUSIVE and you get the correct answer 128 :)
_________________

If something helps, you must appreciate!
I'll regard
Kudos as appreciation.. Thanks :-)

Manager
Manager
avatar
Joined: 07 Aug 2011
Posts: 52
Concentration: Entrepreneurship, Finance
GPA: 3.87
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 31 Oct 2013, 20:46
Why add one to the final result? I can count from 12-96 by four and come up with 22 that way, but I want to know the logic behind it.
Expert Post
2 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 46167
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 01 Nov 2013, 01:20
2
4
Stoneface wrote:
Why add one to the final result? I can count from 12-96 by four and come up with 22 that way, but I want to know the logic behind it.


Set of consecutive multiples of 4 is an evenly spaced set (arithmetic progression).

If the first term of arithmetic progression is \(a_1\) and the common difference of successive members is \(d\), then the \(n_{th}\) term of the sequence is given by:

\(a_ n=a_1+d(n-1)\) --> \(n=\frac{a_n-a_1}{d} + 1\).

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 31 Aug 2013
Posts: 15
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 15 Nov 2013, 21:37
[quote="marcusaurelius"]How many multiples of 4 are there between 12 and 96, inclusive?

A. 21
B. 22
C. 23
D. 24
E. 25


12,16....96

applying AP,
an=a+(n-1)d
96=12+(n-1)4
by solving this equation,the result is

n = 22
thats is the answer
Intern
Intern
avatar
Joined: 14 Jun 2013
Posts: 2
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 10 Dec 2013, 02:41
marcusaurelius wrote:
How many multiples of 4 are there between 12 and 96, inclusive?

A. 21
B. 22
C. 23
D. 24
E. 25

My answer was 21 and that's incorrect.


We can use AP fourmula here, A+(n-1)D to find the nth term
12+(n-1)4=96
4n-4=84
n=22
Senior Manager
Senior Manager
avatar
S
Joined: 18 Aug 2014
Posts: 324
GMAT ToolKit User Reviews Badge
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 21 Apr 2016, 17:41
Bunuel wrote:
\(# \ of \ multiples \ of \ x \ in \ the \ range = \frac{Last \ multiple \ of \ x \ in \ the \ range \ - \ First \ multiple \ of \ x \ in \ the \ range}{x}+1\).


I know this is a really old thread but isn't this an unnecessary step for this formula? I've seen you use it on similar problems including a couple on the GMAT Club tests and I don't understand why you subtract by the first multiple.

For example multiples of 11 in 1000, [(990-11)/11] + 1 is the same as (990/11) so why add the additional subtraction and addition steps?
_________________

Please help me find my lost Kudo's bird

Board of Directors
User avatar
G
Status: QA & VA Forum Moderator
Joined: 11 Jun 2011
Posts: 3509
Location: India
GPA: 3.5
WE: Business Development (Commercial Banking)
GMAT ToolKit User Premium Member
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 22 Apr 2016, 11:03
redfield wrote:
Bunuel wrote:
\(# \ of \ multiples \ of \ x \ in \ the \ range = \frac{Last \ multiple \ of \ x \ in \ the \ range \ - \ First \ multiple \ of \ x \ in \ the \ range}{x}+1\).


I know this is a really old thread but isn't this an unnecessary step for this formula? I've seen you use it on similar problems including a couple on the GMAT Club tests and I don't understand why you subtract by the first multiple.

For example multiples of 11 in 1000, [(990-11)/11] + 1 is the same as (990/11) so why add the additional subtraction and addition steps?


Bunuel's approach is perfect...

Here you are trying to calculate the numbers divisible by 11 from 0 - 1000

But say in a situation like -

Quote:
Find the total no of numbers between 900 - 990 , (both inclusive) which are divisible by 11


Here your formula will not work .

Actually we have 2 sets -

1. 0 - 899

2. 900 - 990

We are interested in the 2nd set

So, U can go this way ( Bunnels approach)

\(Total \ no \ of \ Numbers \ divisible \ by \ 11 \ up \ to \ 990 - Total \ no \ of \ Numbers \ divisible \ by \ 11 \ up \ to 899\) + \(The \ number \ 990\ itself \ (\ which \ is \ divisible \ by\ 11)\)

Hope I am clear, please feel free to revert in case of any doubt. :shock:
_________________

Thanks and Regards

Abhishek....

PLEASE FOLLOW THE RULES FOR POSTING IN QA AND VA FORUM AND USE SEARCH FUNCTION BEFORE POSTING NEW QUESTIONS

How to use Search Function in GMAT Club | Rules for Posting in QA forum | Writing Mathematical Formulas |Rules for Posting in VA forum | Request Expert's Reply ( VA Forum Only )

BSchool Forum Moderator
User avatar
D
Joined: 12 Aug 2015
Posts: 2642
GRE 1: 323 Q169 V154
GMAT ToolKit User Premium Member
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 22 Apr 2016, 11:11
Abhishek009 wrote:
redfield wrote:
Bunuel wrote:
\(# \ of \ multiples \ of \ x \ in \ the \ range = \frac{Last \ multiple \ of \ x \ in \ the \ range \ - \ First \ multiple \ of \ x \ in \ the \ range}{x}+1\).


I know this is a really old thread but isn't this an unnecessary step for this formula? I've seen you use it on similar problems including a couple on the GMAT Club tests and I don't understand why you subtract by the first multiple.

For example multiples of 11 in 1000, [(990-11)/11] + 1 is the same as (990/11) so why add the additional subtraction and addition steps?


Bunuel's approach is perfect...

Here you are trying to calculate the numbers divisible by 11 from 0 - 1000

But say in a situation like -
Quote:
Find the total no of numbers between 900 - 990 , (both inclusive) which are divisible by 11


Here your formula will not work .

Actually we have 2 sets -

1. 0 - 899

2. 900 - 990

We are interested in the 2nd set

So, U can go this way ( Bunnels approach)

\(Total \ no \ of \ Numbers \ divisible \ by \ 11 \ up \ to \ 990 - Total \ no \ of \ Numbers \ divisible \ by \ 11 \ up \ to 899\) + \(The \ number \ 990\ itself \ (\ which \ is \ divisible \ by\ 11)\)

Hope I am clear, please feel free to revert in case of any doubt. :shock:





I feel compelled to say this But this ain't no formula actually
This is just an extension of the basic AP series formula => An = A+(n-1)D
Regards
Stone Cold
_________________


MBA Financing:- INDIAN PUBLIC BANKS vs PRODIGY FINANCE!

Getting into HOLLYWOOD with an MBA!

The MOST AFFORDABLE MBA programs!

STONECOLD's BRUTAL Mock Tests for GMAT-Quant(700+)

AVERAGE GRE Scores At The Top Business Schools!

BSchool Forum Moderator
User avatar
D
Joined: 12 Aug 2015
Posts: 2642
GRE 1: 323 Q169 V154
GMAT ToolKit User Premium Member
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 12 Aug 2016, 08:22
Intern
Intern
avatar
Joined: 28 Feb 2017
Posts: 1
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 01 Mar 2017, 04:21
Bunuel wrote:
marcusaurelius wrote:
How many multiples of 4 are there between 12 and 96, inclusive?

21
22
23
24
25

My answer was 21 and that's incorrect.


\(# \ of \ multiples \ of \ x \ in \ the \ range = \frac{Last \ multiple \ of \ x \ in \ the \ range \ - \ First \ multiple \ of \ x \ in \ the \ range}{x}+1\).

In the original case: \(\frac{96-12}{4}+1=22\).

If the question were: how many multiples of 5 are there between -7 and 35, not inclusive?

Last multiple of 5 IN the range is 30;
First multiple of 5 IN the range is -5;

\(\frac{30-(-5)}{5}+1=8\).

OR:
How many multiples of 7 are there between -28 and -1, not inclusive?
Last multiple of 7 IN the range is -7;
First multiple of 7 IN the range is -21;

\(\frac{-7-(-21)}{7}+1=3\).

Hope it helps.

Attachments

File comment: Please refer to attachment. There are 7 multiples of 5 i.e. -5, 5, 10, 15, 20, 25, 30. Then according to answer you did they are 8 multiples. How? please explain.
Snapshot.png
Snapshot.png [ 4.73 KiB | Viewed 11798 times ]

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 46167
How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 01 Mar 2017, 04:24
madannadam9 wrote:
Bunuel wrote:
marcusaurelius wrote:
How many multiples of 4 are there between 12 and 96, inclusive?

21
22
23
24
25

My answer was 21 and that's incorrect.


\(# \ of \ multiples \ of \ x \ in \ the \ range = \frac{Last \ multiple \ of \ x \ in \ the \ range \ - \ First \ multiple \ of \ x \ in \ the \ range}{x}+1\).

In the original case: \(\frac{96-12}{4}+1=22\).

If the question were: how many multiples of 5 are there between -7 and 35, not inclusive?

Last multiple of 5 IN the range is 30;
First multiple of 5 IN the range is -5;

\(\frac{30-(-5)}{5}+1=8\).

OR:
How many multiples of 7 are there between -28 and -1, not inclusive?
Last multiple of 7 IN the range is -7;
First multiple of 7 IN the range is -21;

\(\frac{-7-(-21)}{7}+1=3\).

Hope it helps.


You missed 0, which is a multiple of every integer.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Expert Post
Target Test Prep Representative
User avatar
G
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 2738
Location: United States (CA)
Re: How many multiples of 4 are there between 12 and 96, inclusive? [#permalink]

Show Tags

New post 19 Mar 2018, 16:10
marcusaurelius wrote:
How many multiples of 4 are there between 12 and 96, inclusive?

A. 21
B. 22
C. 23
D. 24
E. 25


We can determine the number of multiples of 4 from 12 to 96, inclusive, by using the following formula:

(largest multiple of 4 - smallest multiple of 4)/4 + 1

(96 - 12)/4 + 1 =84/4 + 1 = 21 + 1 = 22

Answer: B
_________________

Scott Woodbury-Stewart
Founder and CEO

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Re: How many multiples of 4 are there between 12 and 96, inclusive?   [#permalink] 19 Mar 2018, 16:10
Display posts from previous: Sort by

How many multiples of 4 are there between 12 and 96, inclusive?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.