Bunuel wrote:
How many positive two-digit numbers yield a remainder of 1 when divided by 4 and also yield a remainder of 1 when divided by 14?
A. 3
B. 4
C. 5
D. 6
E. 7
Let´s use some powerful "divisibility tools" carefully explained in our course.
(Our students perform all operations below in approximately 2min with no rush!)
\(N = 4Q + 1 = 14J + 1\,\,\,\,\,\,\,\,\left( {Q,J\,\,{\text{ints}}} \right)\)
\(\left. \begin{gathered}\\
N - 1 = 4Q \hfill \\\\
N - 1 = 14J\, \hfill \\ \\
\end{gathered} \right\}\,\,\,\,\mathop \Rightarrow \limits^{LCM\,\left( {4,14} \right)\, = \,\,{2^2} \cdot 7} N - 1 = 28K\,\,\,\,\, \Rightarrow \,\,\,\,N = 28K + 1\,\,,\,\,\,K\,\,\operatorname{int}\)
\(10 \leqslant N \leqslant 99\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\,10 \leqslant 28K + 1 \leqslant 99\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\,9 \leqslant 28K \leqslant 98\)
\(9 \leqslant 28K \leqslant 98\,\,\,\, \Rightarrow \,\,\,\,1 \cdot 28 \leqslant 28K \leqslant 3 \cdot 28\,\,\,\,\, \Rightarrow \,\,\,\,1 \leqslant K \leqslant 3\,\,\,\,\, \Rightarrow \,\,\,\,? = 3\,\,\,\,\,\,\,\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.
_________________
Fabio Skilnik ::
GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here:
https://gmath.net