fskilnik wrote:
GMATH practice exercise (Quant Class 16)
How many positive two-digit numbers are odd, not divisible by 3, and have distinct digits?
(A) 28
(B) 27
(C) 26
(D) 25
(E) 24
\(?\,\,\,\,:\,\,\,\# N\,,\,\,N \in \left[ {10,99} \right]\,\,,\,\,{\rm{odd}}\,\,{\rm{,}}\,\,{\rm{not}}\,\,{\rm{divisible}}\,\,{\rm{by}}\,\,{\rm{3}}\,,\,\,\,{\rm{not}}\,\,{\rm{divisible}}\,\,{\rm{by}}\,\,11\)
\({\rm{I}}{\rm{.}}\,\,\,\,{\rm{odd}} \in \left[ {10,99} \right]\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,{1 \over 2}\left( {99 - 10 + 1} \right) = 45\,\,{\rm{numbers}}\)
\({\rm{I}}{\rm{.}}\,\, \cap \,\,\left( {{\rm{div}}\,\,{\rm{by}}\,\,3} \right)\,\,\,:\,\,\,\left\{ \matrix{
\,15 = 3 \cdot 5 + 0 \cdot 6 \hfill \cr
\,21 = 3 \cdot 5 + 1 \cdot 6 \hfill \cr
\,\,\, \ldots \hfill \cr
\,99 = 3 \cdot 5 + 14 \cdot 6 \hfill \cr} \right.\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,14 + 1 = 15\,\,{\rm{numbers}}\)
\({\rm{I}}{\rm{.}}\,\, \cap \,\,\left( {\underline {{\rm{not}}} \,\,{\rm{div}}\,\,{\rm{by}}\,\,3} \right)\,\,\,:\,\,\,45 - 15 = 30\,\,{\rm{numbers}}\)
\({\rm{I}}{\rm{.}}\,\, \cap \,\,\left( {\underline {{\rm{not}}} \,\,{\rm{div}}\,\,{\rm{by}}\,\,3} \right) \cap \,\,\left( {{\rm{div}}\,\,{\rm{by}}\,\,11} \right)\,\,\,:\,\,\,\left\{ {11,33,55,77,99} \right\} - \left\{ {33,99} \right\}\,\,\,\,\, \Rightarrow \,\,\,\,\,3\,\,{\rm{numbers}}\)
\(?\,\, = \,\,{\rm{I}}{\rm{.}}\,\, \cap \,\,\left( {\underline {{\rm{not}}} \,\,{\rm{div}}\,\,{\rm{by}}\,\,3} \right) \cap \,\,\left( {\underline {{\rm{not}}} \,\,{\rm{div}}\,\,{\rm{by}}\,\,11} \right) = \,\,30 - 3 = 27\,\,{\rm{numbers}}\)
The correct answer is (B).
We follow the notations and rationale taught in the
GMATH method.
Regards,
Fabio.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net