MathRevolution wrote:
[
Math Revolution GMAT math practice question]
If 2 DIFFERENT numbers are selected from the first 8 prime numbers, what is the probability that the sum of the 2 numbers selected is an even number?
\(A. \frac{1}{2}\)
\(B. \frac{1}{3}\)
\(C. \frac{2}{3}\)
\(D. \frac{1}{4}\)
\(E. \frac{3}{4}\)
\({\rm{first}}\,\,{\rm{8}}\,\,{\rm{primes}}\,\,\left\{ \matrix{
\,{\rm{first}} = 2 = {\rm{even}} \hfill \cr
\,{\rm{7}}\,{\rm{others}}\,\, = \,\,{\rm{odd}}\,\,\,\,\,\left( {{\rm{it}}\,\,{\rm{does}}\,\,{\rm{not}}\,\,{\rm{matter}}\,{\rm{who}}\,\,{\rm{they}}\,\,{\rm{are}}!} \right) \hfill \cr} \right.\,\,\,\,\,\,\)
\(? = P\left( {2\,\,{\text{different}}\,\,{\text{selected}}\,\,{\text{have}}\,{\text{sum}}\,\,{\text{even}}} \right) = P\left( {{\text{number}}\,\,{\text{2}}\,\,{\text{is}}\,\,{\text{not }}\,{\text{selected}}} \right)\)
\({\text{total}} = C\left( {8,2} \right)\,\,\,{\text{equiprobable}}\)
\({\text{favorable}}\,{\text{ = }}\,{\text{C}}\left( {7,2} \right)\,\,\,\,\,\,\left[ {{\text{number}}\,{\text{2}}\,\,{\text{is}}\,{\text{not}}\,{\text{an}}\,{\text{option}}} \right]\)
\(? = \frac{{C\left( {7,2} \right)}}{{C\left( {8,2} \right)}} = \frac{{7 \cdot 6}}{{8 \cdot 7}} = \frac{3}{4}\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.
_________________
Fabio Skilnik ::
GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here:
https://gmath.net