Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Given: \(-2x>3y\). Question: is \(x<0\)? (Note here that if \(y\) is any positive number then we would have \(-2x>positive\), and in order that to be true \(x\) must be some negative number).

Given: \(-2x>3y\). Q: is \(x<0\)? (Note here that if \(y\) is any positive number than we would have \(-2x>positive\), and in order that to be true \(x\) must be some negative number).

Given: \(-2x>3y\). Q: is \(x<0\)? (Note here that if \(y\) is any positive number then we would have \(-2x>positive\), and in order that to be true \(x\) must be some negative number).

(2) \(2x+5y-20=0\) --> \(2x=20-5y\) --> \(-20+5y>3y\) --> \(y>10\). Same as above: \(x<0\). Sufficient.

Answer: D.

Can you please explain stmt. 2 again. Unable to understand the following stmt---

\(-20+5y>3y\)

(2) \(2x+5y-20=0\) --> \(2x=20-5y\) --> given \(-2x>3y\), substitute \(2x\) --> \(-(20-5y)>3y\) --> \(-20+5y>3y\) --> \(y>10\) --> \(y=positive\), as discussed above if \(y\) is any positive number then \(x\) must be some negative number: \(x<0\). Sufficient.

I got this question in the GMATPrep. I just not sure how Statement B is also valid. Please help. Here is it.

if -2X > 3Y, is X negative? (1) Y > 0 (2) 2X + 5Y - 20 = 0

The key here is knowing whether Y is positive or negative. If Y is positive, then X MUST be negative. If Y=1, then in order for -2x = 3(1) = 3, then X must be a negative number.

If Y is negative, well - X could go either way. For example, if Y = -2, then x could = 2, in which case you would get

-2X > 3Y -2X > 3(-2) -2X > -6 x < 3

But the major point here is that if Y is positive, then X MUST be negative. We already know (1) is good. But with (2), what info do we know?

Well, if you combine -2X > 3Y with 2X + 5Y > 20

then the 2X cancels the -2X, bring the 3Y to the left and negate it and combine it with 5Y.

5Y - 3Y gets you to 2Y

So you get 2Y > 20 Y>10

OK, so what does that tell you? Well, it tells you that Y is positive! It's essentially a subset of statement (1) where Y>0. So both (1) and (2) basically say that Y is positive. That alone is enough info to answer the original question.

Therefore, when both (1) and (2) are good, we pick answer choice (D).

Re: If -2x > 3y, is x negative? (1) y > 0 (2) 2x + 5y - 20 = 0 [#permalink]

Show Tags

29 Jun 2013, 07:45

1

This post received KUDOS

fozzzy wrote:

In statement 2 we can write the equation 2x+3y+2y = 20 we know 2x+3y is positive and we get y = 10 hence same as statement 1 is this approach correct?

If -2x > 3y, is x negative?

(1) y > 0 -2x > +ve number, hence x is negative. Sufficient

(2) 2x + 5y - 20 = 0 The area defined by -2x > 3y is the area under the red line. If we know that \(2x + 5y - 20 = 0\) (blue line) (given the initial condition) we can say that x is negative because they intersect when x is negative. (refer to the image) Sufficient

Your approach is correct. We know that 2x+3y is negative (typo I think), so \(2x + 3y +2y= 20\) can be seen as \(-ve +2y=20\) so y is positive for sure as \(2y=20+(+ve)\)

Attachments

Immagine.JPG [ 23.99 KiB | Viewed 4851 times ]

_________________

It is beyond a doubt that all our knowledge that begins with experience.

If -2x > 3y, is x negative? (1) y > 0 (2) 2x + 5y - 20 = 0

-2x > 3y 2x + 3y<0 -----(1)

Statement 1 If y>0 & 2x + 3y<0

Then x must be Negative. Sufficient

Statement 2 2x + 5y - 20 = 0 2x + 5y = 20 (2x + 3y) + 2y=20 We can write 2y + some negative no = 20 2y = 20 + some Positiveno y = 10 + some Positiveno/2 This mean that y>10

2x + 3y<0 2x< -3y x < -1.5 (Positive no) because y is positive

Then x must be Negative. Sufficient

Answer D
_________________

If you like my Question/Explanation or the contribution, Kindly appreciate by pressing KUDOS. Kudos always maximizes GMATCLUB worth-Game Theory

If you have any question regarding my post, kindly pm me or else I won't be able to reply

If -2x > 3y, is x negative? (1) y > 0 (2) 2x + 5y - 20 = 0

Hi, -2x > 3y... (a)If y<0, x can be both +ive and -ive.. (b)if y>0, x will have to be +ive as 3y is positive and -2x , to be positive, has to have x as -ive..

now lets see the choices.. (1) y > 0 If y>0, x is -ive as proved in (b) above... suff

(2) 2x + 5y - 20 = 0.. this can be written as 2x+3y + 2y -20=0.. now 2x+3y<0, so 2y>20... or y is +ive and therefore x is -ive.... suff

If -2x > 3y, is x negative? (1) y > 0 (2) 2x + 5y - 20 = 0

Hi, -2x > 3y... (a)If y<0, x can be both +ive and -ive.. (b)if y>0, x will have to be +ive as 3y is positive and -2x , to be positive, has to have x as -ive..

now lets see the choices.. (1) y > 0 If y>0, x is -ive as proved in (b) above... suff

(2) 2x + 5y - 20 = 0.. this can be written as 2x+3y + 2y -20=0.. now 2x+3y<0, so 2y>20... or y is +ive and therefore x is -ive.... suff

If -2x > 3y, is x negative? (1) y > 0 (2) 2x + 5y - 20 = 0

Hi, -2x > 3y... (a)If y<0, x can be both +ive and -ive.. (b)if y>0, x will have to be +ive as 3y is positive and -2x , to be positive, has to have x as -ive..

now lets see the choices.. (1) y > 0 If y>0, x is -ive as proved in (b) above... suff

(2) 2x + 5y - 20 = 0.. this can be written as 2x+3y + 2y -20=0.. now 2x+3y<0, so 2y>20... or y is +ive and therefore x is -ive.... suff

ans D

how can you say 2x+3y<0?

Hi, 2x + 3y <0 comes from -2x>3y.. -2x>3y.. add 2x to both sides.. 2x-2x>3y+2x.. 0>2x+3y... hope it helps
_________________

Hi, 2x + 3y <0 comes from -2x>3y.. -2x>3y.. add 2x to both sides.. 2x-2x>3y+2x.. 0>2x+3y... hope it helps

Aye, it does! Thanks

Also, if I understand, <> sign changes in multiplication only![/quote]

hi, yes you are right , whenever you multiply two sides on either side of equality with a -ive sign or -ive quantity, you are required to change the greater/lesser than sign.. -2x>3y.. 2x<-3y..
_________________

Given: \(-2x>3y\). Question: is \(x<0\)? (Note here that if \(y\) is any positive number then we would have \(-2x>positive\), and in order that to be true \(x\) must be some negative number).

Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.

If -2x > 3y, is x negative?

(1) y > 0 (2) 2x + 5y - 20 = 0

In the original condition, there are 2 variables(x,y) and 1 equation(-2x>3y), which should match with the number of equations. So you need 1 equation. For 1) 1 equation, for 2) 1 equation, which is likely to make D the answer. For 1), when y>0, it becomes 3y>2y. That is, -2x>3y>2y, -2x>2y. -x>y --> -x>y>0, -x>0 therefore x<0, which is yes and sufficient. For 2), substitute y=(-2/5)x+4 to the equation. It becomes -2x>3(-2/5)x+4 and multiply 5 to both equations. Divide -10x>-6x+20, -4x>20 with -4 and x<-5<0 is also yes and sufficient. Therefore, the answer is D.

-> For cases where we need 1 more equation, such as original conditions with “1 variable”, or “2 variables and 1 equation”, or “3 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 59 % chance that D is the answer, while A or B has 38% chance and C or E has 3% chance. Since D is most likely to be the answer using 1) and 2) separately according to DS definition. Obviously there may be cases where the answer is A, B, C or E.
_________________

St1: y > 0 --> 3y is positive -2x > 3y --> So -2x must be positive --> This is possible only if x is negative Sufficient

St2: 2x + 5y = 20 --> This means 2x + 5y > 0 ........(1) From the given statement, we have -2x - 3y > 0 ........(2) Add (1) and (2) --> 2y > 0 --> Hence y > 0 If y > 0 then x is negative Sufficient