GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 18 Dec 2018, 20:24

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
  • Happy Christmas 20% Sale! Math Revolution All-In-One Products!

     December 20, 2018

     December 20, 2018

     10:00 PM PST

     11:00 PM PST

    This is the most inexpensive and attractive price in the market. Get the course now!
  • Key Strategies to Master GMAT SC

     December 22, 2018

     December 22, 2018

     07:00 AM PST

     09:00 AM PST

    Attend this webinar to learn how to leverage Meaning and Logic to solve the most challenging Sentence Correction Questions.

If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51280
If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)?  [#permalink]

Show Tags

New post 06 Mar 2017, 00:49
1
12
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

66% (02:18) correct 34% (02:30) wrong based on 390 sessions

HideShow timer Statistics

Most Helpful Community Reply
Senior CR Moderator
User avatar
V
Status: Long way to go!
Joined: 10 Oct 2016
Posts: 1375
Location: Viet Nam
GMAT ToolKit User Premium Member
Re: If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)?  [#permalink]

Show Tags

New post 07 Mar 2017, 20:39
5
1
Bunuel wrote:
If \(4^a∗2^b=16^4\), what is the minimum possible value of (32–ab)?

A. 32
B. 16
C. 8
D. 0
E. -16


\(4^a * 2^b = 16^4 \iff 2^{2a} * 2^b = 2 ^ 16 \iff 2a+b=16 \)

If either \(a\) or \(b\) is negative, then \(ab\) is negative. Hence \(32-ab > 32\).

If either \(a\) or \(b\) equals to 0, then \(32-ab=32\)

If both \(a\) and \(b\) is positive, using AM-GM inequality, we have

\(16=2a+b \geq 2 \sqrt{2a*b} \implies 8 \geq \sqrt{2ab} \implies ab \leq 32\).

\(ab=32 \iff 2a=b=8 \iff a=4\) and \(b=8\).

Hence, \(32 - ab \geq 32-32=0\). The answer is D
_________________

Actual LSAT CR bank by Broall

How to solve quadratic equations - Factor quadratic equations
Factor table with sign: The useful tool to solve polynomial inequalities
Applying AM-GM inequality into finding extreme/absolute value

New Error Log with Timer

General Discussion
Manager
Manager
avatar
G
Joined: 02 Aug 2015
Posts: 118
Re: If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)?  [#permalink]

Show Tags

New post 06 Mar 2017, 06:51
1
Bunuel wrote:
If \(4^a∗2^b=16^4\), what is the minimum possible value of (32–ab)?

A. 32
B. 16
C. 8
D. 0
E. -16


\(4^a∗2^b=16^4\) -> 2a+b=16. When a=4 and b=8, ab=32 hence the lowest value of (32-ab) is 0.

Hence I'm getting D.
Veritas Prep GMAT Instructor
User avatar
G
Affiliations: Veritas Prep
Joined: 21 Dec 2014
Posts: 40
Location: United States (DC)
My Company: www.parallaxprep.com
GMAT 1: 790 Q51 V51
GRE 1: Q800 V800
GPA: 3.11
WE: Education (Education)
Re: If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)?  [#permalink]

Show Tags

New post 07 Mar 2017, 20:13
Diwakar003 wrote:
Bunuel wrote:
If \(4^a∗2^b=16^4\), what is the minimum possible value of (32–ab)?

A. 32
B. 16
C. 8
D. 0
E. -16


\(4^a∗2^b=16^4\) -> 2a+b=16. When a=4 and b=8, ab=32 hence the lowest value of (32-ab) is 0.

Hence I'm getting D.


Okay, but how can you be absolutely sure that that's the absolute lowest possible?
Veritas Prep GMAT Instructor
User avatar
G
Affiliations: Veritas Prep
Joined: 21 Dec 2014
Posts: 40
Location: United States (DC)
My Company: www.parallaxprep.com
GMAT 1: 790 Q51 V51
GRE 1: Q800 V800
GPA: 3.11
WE: Education (Education)
Re: If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)?  [#permalink]

Show Tags

New post 07 Mar 2017, 20:43
nguyendinhtuong wrote:
Bunuel wrote:
If \(4^a∗2^b=16^4\), what is the minimum possible value of (32–ab)?

A. 32
B. 16
C. 8
D. 0
E. -16


\(4^a * 2^b = 16^4 \iff 2^{2a} * 2^b = 2 ^ 16 \iff 2a+b=16 \)

If either \(a\) or \(b\) is negative, then \(ab\) is negative. Hence \(32-ab > 32\).

If either \(a\) or \(b\) equals to 0, then \(32-ab=32\)

If both \(a\) and \(b\) is positive, using AM-GM inequality, we have

\(16=2a+b \geq 2 \sqrt{2a*b} \implies 8 \geq \sqrt{2ab} \implies ab \leq 32\).

\(ab=32 \iff 2a=b=8 \iff a=4\) and \(b=8\).

Hence, \(32 - ab \geq 32-32=0\). The answer is D


Fancy. :P

Note that AM-GM is pretty firmly beyond the scope of necessary GMAT tools, but this does work.

However, also note that there is a way to prove the minimum without resorting to this tool...
Director
Director
avatar
S
Joined: 21 Mar 2016
Posts: 523
Reviews Badge
Re: If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)?  [#permalink]

Show Tags

New post 07 Mar 2017, 22:32
AnthonyRitz wrote:
nguyendinhtuong wrote:
Bunuel wrote:
If \(4^a∗2^b=16^4\), what is the minimum possible value of (32–ab)?

A. 32
B. 16
C. 8
D. 0
E. -16


\(4^a * 2^b = 16^4 \iff 2^{2a} * 2^b = 2 ^ 16 \iff 2a+b=16 \)

If either \(a\) or \(b\) is negative, then \(ab\) is negative. Hence \(32-ab > 32\).

If either \(a\) or \(b\) equals to 0, then \(32-ab=32\)

If both \(a\) and \(b\) is positive, using AM-GM inequality, we have

\(16=2a+b \geq 2 \sqrt{2a*b} \implies 8 \geq \sqrt{2ab} \implies ab \leq 32\).

\(ab=32 \iff 2a=b=8 \iff a=4\) and \(b=8\).

Hence, \(32 - ab \geq 32-32=0\). The answer is D


Fancy. :P

Note that AM-GM is pretty firmly beyond the scope of necessary GMAT tools, but this does work.

However, also note that there is a way to prove the minimum without resorting to this tool...


AnthonyRitz please explain another way
Veritas Prep GMAT Instructor
User avatar
G
Affiliations: Veritas Prep
Joined: 21 Dec 2014
Posts: 40
Location: United States (DC)
My Company: www.parallaxprep.com
GMAT 1: 790 Q51 V51
GRE 1: Q800 V800
GPA: 3.11
WE: Education (Education)
If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)?  [#permalink]

Show Tags

New post Updated on: 07 Mar 2017, 22:54
4
mohshu wrote:
AnthonyRitz please explain another way


Fair enough. Try this:

\(2a+b=16\)

\(32-ab = 32-a(16-2a) = 32-16a+2a^2 = 2(a^2-8a+16) = 2(a-4)^2\)

Since \((a-4)^2 \geq 0\) with equality when \(a = 4\), the minimum is \(0\) when \(a = 4\) and \(b = 8\).

Originally posted by AnthonyRitz on 07 Mar 2017, 22:39.
Last edited by AnthonyRitz on 07 Mar 2017, 22:54, edited 2 times in total.
Senior CR Moderator
User avatar
V
Status: Long way to go!
Joined: 10 Oct 2016
Posts: 1375
Location: Viet Nam
GMAT ToolKit User Premium Member
If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)?  [#permalink]

Show Tags

New post 07 Mar 2017, 22:46
AnthonyRitz wrote:
nguyendinhtuong wrote:
Bunuel wrote:
If \(4^a∗2^b=16^4\), what is the minimum possible value of (32–ab)?

A. 32
B. 16
C. 8
D. 0
E. -16


\(4^a * 2^b = 16^4 \iff 2^{2a} * 2^b = 2 ^ 16 \iff 2a+b=16 \)

If either \(a\) or \(b\) is negative, then \(ab\) is negative. Hence \(32-ab > 32\).

If either \(a\) or \(b\) equals to 0, then \(32-ab=32\)

If both \(a\) and \(b\) is positive, using AM-GM inequality, we have

\(16=2a+b \geq 2 \sqrt{2a*b} \implies 8 \geq \sqrt{2ab} \implies ab \leq 32\).

\(ab=32 \iff 2a=b=8 \iff a=4\) and \(b=8\).

Hence, \(32 - ab \geq 32-32=0\). The answer is D


Fancy. :P

Note that AM-GM is pretty firmly beyond the scope of necessary GMAT tools, but this does work.

However, also note that there is a way to prove the minimum without resorting to this tool...


There is another way.

\((2a)+b=16 \implies ((2a)+b)^2=16^2 \implies (2a)^2 + b^2 + 2*(2a)*b=16^2\)
\((2a)^2 + b^2 - 2*(2a)*b = 16^2 - 4*(2a)*b \implies (2a-b)^2 = 16^2 - 4*(2a)*b\)

We have \((2a-b)^2 \geq 0 \;\; \forall a,b \in R\).
Hence \(16^2 -4 *(2a)*b \geq 0 \implies 4*(2a)*b \leq 16^2 \implies 8ab \leq 16^2 \implies ab\leq 32\)
_________________

Actual LSAT CR bank by Broall

How to solve quadratic equations - Factor quadratic equations
Factor table with sign: The useful tool to solve polynomial inequalities
Applying AM-GM inequality into finding extreme/absolute value

New Error Log with Timer

Director
Director
User avatar
S
Status: Come! Fall in Love with Learning!
Joined: 05 Jan 2017
Posts: 516
Location: India
Premium Member
Re: If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)?  [#permalink]

Show Tags

New post 08 Mar 2017, 00:58
LHS: 4^a x 2^b = 2^(2a+b)
RHS: 16^4 = 2^16

hence 2a+b =16 or b = 16-2a
putting in the expression 32-ab we get 32-a(16-2a) = 32-16a +2a^2

minima of quadratic equation comes at 16/4 = 4.

for a = 4 b = 8. so ab = 32.hence 32-ab = 32-32 = 0.

Option D
_________________

GMAT Mentors
Image

Target Test Prep Representative
User avatar
P
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 4328
Location: United States (CA)
Re: If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)?  [#permalink]

Show Tags

New post 09 Mar 2017, 16:15
1
Bunuel wrote:
If \(4^a∗2^b=16^4\), what is the minimum possible value of (32–ab)?

A. 32
B. 16
C. 8
D. 0
E. -16


We can simplify the given equation by re-expressing 4 as 2^2 and 16 as 2^4:

(2^2)^a * 2^b = (2^4)^4

2^(2a) * 2^b = 2^16

2^(2a + b) = 2^16

In an equation, when the bases are the same, the exponents must be equal:

2a + b = 16

b = 16 - 2a

We need to find the minimum value of (32 - ab). We have determined that b = 16 - 2a, so we need to find the minimum value of 32 - a(16 - 2a).

Let’s simplify this expression:

32 - 16a + 2a^2

2a^2 - 16a + 32

The above is a quadratic expression. Recall that the graph of y = ax^2 + bx + c is a parabola. It opens up when a > 0, and its vertex will be the minimum point. To find the x-value of the vertex, we can use the formula x = -b/(2a). As for the minimum value of the quadratic expression (i.e., the y value), we can plug the x-value of the vertex back into the expression.

Thus, the minimum value of the expression occurs when a = -(-16)/[2(2)] = 16/4 = 4, and the minimum value is:

2(4)^2 - 16(4) + 32

32 - 64 + 32 = 0

Answer: D
_________________

Scott Woodbury-Stewart
Founder and CEO

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Manager
Manager
avatar
S
Joined: 08 Oct 2016
Posts: 204
Location: United States
Concentration: General Management, Finance
GPA: 2.9
WE: Engineering (Telecommunications)
Re: If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)?  [#permalink]

Show Tags

New post 20 Apr 2017, 12:39
Took a little more time but solved it
Choice is: D
here you go
4^a*2^b=16^4
2^2a*2^b=2^16
so
2a+b=16
option E ruled out min we get is Zero
So check
2(4)+8=16
LHS=RHS
put in 32-ab
32-(4)(8)
0
Here is our answer
_________________

Got Q42,V17
Target#01 Q45,V20--April End

Intern
Intern
avatar
B
Joined: 03 Jul 2018
Posts: 4
Re: If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)?  [#permalink]

Show Tags

New post 11 Sep 2018, 08:33
Well, once you have the equation 2a+b=16, equate answer choices to "32-ab".
I tried with choice D - and it satisfied both eqns.
The only other answer choice lower than 0 was E, which does not satisfy 2a+b=16.
So we're left with D. :)
Intern
Intern
avatar
B
Joined: 03 Sep 2018
Posts: 5
Re: If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)?  [#permalink]

Show Tags

New post 17 Sep 2018, 06:58
I think I went about this the wrong way but I ended up with the right answer:

\(4^a * 2^b = 16^4\)
\(4^a * 2^b = (2 * 2 * 4)^4\)
\(4^a * 2^b = (2^2 * 4)^4\)
\(4^a * 2^b = 2^8 * 4^4\)

So I took \(a = 4\) and \(b = 8\) and plugged it into \((32 - ab)\) and got 0. D.
I didn't feel totally confident about it though.
Intern
Intern
avatar
B
Joined: 09 May 2016
Posts: 44
Re: If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)?  [#permalink]

Show Tags

New post 23 Sep 2018, 02:32
broall wrote:
Bunuel wrote:
If \(4^a∗2^b=16^4\), what is the minimum possible value of (32–ab)?

A. 32
B. 16
C. 8
D. 0
E. -16


\(4^a * 2^b = 16^4 \iff 2^{2a} * 2^b = 2 ^ 16 \iff 2a+b=16 \)

If either \(a\) or \(b\) is negative, then \(ab\) is negative. Hence \(32-ab > 32\).

If either \(a\) or \(b\) equals to 0, then \(32-ab=32\)

If both \(a\) and \(b\) is positive, using AM-GM inequality, we have

\(16=2a+b \geq 2 \sqrt{2a*b} \implies 8 \geq \sqrt{2ab} \implies ab \leq 32\).

\(ab=32 \iff 2a=b=8 \iff a=4\) and \(b=8\).

Hence, \(32 - ab \geq 32-32=0\). The answer is D



Can someone pls explain the AM-GM theory here. Thanks a ton in advance
GMAT Club Bot
Re: If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)? &nbs [#permalink] 23 Sep 2018, 02:32
Display posts from previous: Sort by

If 4^a∗2^b=16^4, what is the minimum possible value of (32–ab)?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


cron
Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.