MathRevolution wrote:

[

Math Revolution GMAT math practice question]

If \(A={ x| x^3>8 }, B={ x| 1<x^3<64 }, C={ x| x^3<27 }\), which inequality represents \(A∩B∩C\)?

\(A. x^3<27\)

\(B. 1< x^3<64\)

\(C. x^3<64\)

\(D. 1<x^3<27\)

\(E. 8<x^3<27\)

\(A = \left\{ {\,\left. {x\,\,} \right|\,\,\,{x^3} > {2^3}\,} \right\}\)

\(B = \left\{ {\,\left. {x\,\,} \right|\,\,\,1 < {x^3} < {4^3}\,} \right\}\)

\(C = \left\{ {\,\left. {x\,\,} \right|\,\,\,{x^3} < {3^3}\,} \right\}\)

\(? = A \cap B \cap C = \left\{ {\,\left. {x\,\,} \right|\,\,\,{2^3} < {x^3} < {3^3}\,} \right\}\,\,\,\,\,\, \Rightarrow \,\,\,\,\left( E \right)\)

This solution follows the notations and rationale taught in the GMATH method.

Regards,

Fabio.

_________________

Fabio Skilnik :: GMATH method creator (Math for the GMAT)

Our high-level "quant" preparation starts here: https://gmath.net