Last visit was: 14 Jul 2025, 18:09 It is currently 14 Jul 2025, 18:09
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
emmak
Joined: 09 Feb 2013
Last visit: 08 Jul 2014
Posts: 103
Own Kudos:
4,547
 [37]
Given Kudos: 17
Posts: 103
Kudos: 4,547
 [37]
7
Kudos
Add Kudos
30
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
VeritasPrepRon
User avatar
Veritas Prep GMAT Instructor
Joined: 11 Dec 2012
Last visit: 13 Jul 2025
Posts: 308
Own Kudos:
682
 [15]
Given Kudos: 66
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 308
Kudos: 682
 [15]
9
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
General Discussion
User avatar
mau5
User avatar
Verbal Forum Moderator
Joined: 10 Oct 2012
Last visit: 31 Dec 2024
Posts: 479
Own Kudos:
3,278
 [1]
Given Kudos: 141
Posts: 479
Kudos: 3,278
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
dave785
Joined: 09 Apr 2013
Last visit: 27 Feb 2020
Posts: 161
Own Kudos:
122
 [1]
Given Kudos: 40
Location: United States
Concentration: Finance, Economics
GMAT 1: 710 Q44 V44
GMAT 2: 740 Q48 V44
GPA: 3.1
WE:Sales (Mutual Funds and Brokerage)
GMAT 2: 740 Q48 V44
Posts: 161
Kudos: 122
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
VeritasPrepRon
emmak
If, for all positive integer values of n, P(n) is defined as the sum of the smallest n prime numbers, then which of the following quantities are odd integers?
I. P(10)
II. P(P(10))
III. P(P(P(10)))

(A) I only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III

Express appreciation by pressing KUDOS button

This kind of question can give students fits. The key is to figure out what is being asked. The function P is summing up the first N prime numbers, so for example P(3) = 2 + 3 + 5. The total is 10. If I picked P(4), I'd get the same sum + 7, or 17.

Since the question hinges on whether the sum is even or odd, the only number that's unique in this circumstance is 2, as it is the only even prime number in an otherwise homogenous sea of odd numbers. Thus P(1) is even, P(2) is odd, P(3) is even again and P(4) is odd again. This is the pattern, so clearly P(10) will be 2 + nine odd numbers, so it will be odd. We can eliminate D.

P(P(10)) is where this starts getting interesting. You're doing the same test on a number we don't exactly know, but we know it must be odd. Since we know the pattern, the odd number will give us even. P(P(10)) will not be odd, eliminate B and E.

P(P(10))) will be the same function over a number we just calculated would be even. Hence it must be odd again. Eliminate A, the answer must be C.

Function questions are among the least understood questions on the GMAT, and this type of question can get people spending 3-4 minutes extrapolating numbers. If you understand the pattern using a small sample and reasoning, you can get this question right in under two minutes.

Hope this helps!
-Ron

Ah that makes sense... took me a while.

I. Even + 9 odds = odd.
II. Even + (odd * (odd - 1)) = even
III. Even + (odd * (even - 1)) = odd
User avatar
jlgdr
Joined: 06 Sep 2013
Last visit: 24 Jul 2015
Posts: 1,316
Own Kudos:
2,722
 [2]
Given Kudos: 355
Concentration: Finance
Posts: 1,316
Kudos: 2,722
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Nice question +1. For this I would identify two cases: First we know that the only even number is 2. Therefore, if the number of prime integers that is n is even then the sum is odd, while if n is odd the sum is even.

In I we have that n is even therefore sum is odd. TRUE.

In II we have that the sum is odd so if we take that n is odd then the sum again will be even. FALSE.

In III, we get that the sum of n=10 is odd. Now the sum of odd is even and again the sum of even is odd. So III is TRUE as well.

Thus answer is C

Just to clarify

n=even, sum is odd
n=odd, sum is even

Hope this is clear
Cheers
J
User avatar
vitaliyGMAT
Joined: 13 Oct 2016
Last visit: 26 Jul 2017
Posts: 297
Own Kudos:
843
 [3]
Given Kudos: 40
GPA: 3.98
Posts: 297
Kudos: 843
 [3]
1
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
I. P(10) = 2 + Σ(9 odd integers) = 2 + Σ(8 odd integers) + odd = 2 + even + odd = odd

II. P(P(10)) = P(odd) = 2+ Σ(even # of odd integers) = even + even = even

III. P(P(P(10)) = P(even) = 2 + Σ(odd # of odd integers) = 2 + odd = odd

C.
avatar
buan15
Joined: 14 Jun 2016
Last visit: 06 Jan 2022
Posts: 111
Own Kudos:
Given Kudos: 54
Location: India
GMAT 1: 610 Q49 V24
GMAT 2: 690 Q49 V33
WE:Engineering (Manufacturing)
Products:
GMAT 2: 690 Q49 V33
Posts: 111
Kudos: 233
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasPrepRon
emmak
If, for all positive integer values of n, P(n) is defined as the sum of the smallest n prime numbers, then which of the following quantities are odd integers?
I. P(10)
II. P(P(10))
III. P(P(P(10)))

(A) I only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III

Express appreciation by pressing KUDOS button

This kind of question can give students fits. The key is to figure out what is being asked. The function P is summing up the first N prime numbers, so for example P(3) = 2 + 3 + 5. The total is 10. If I picked P(4), I'd get the same sum + 7, or 17.

Since the question hinges on whether the sum is even or odd, the only number that's unique in this circumstance is 2, as it is the only even prime number in an otherwise homogenous sea of odd numbers. Thus P(1) is even, P(2) is odd, P(3) is even again and P(4) is odd again. This is the pattern, so clearly P(10) will be 2 + nine odd numbers, so it will be odd. We can eliminate D.

P(P(10)) is where this starts getting interesting. You're doing the same test on a number we don't exactly know, but we know it must be odd. Since we know the pattern, the odd number will give us even. P(P(10)) will not be odd, eliminate B and E.

P(P(10))) will be the same function over a number we just calculated would be even. Hence it must be odd again. Eliminate A, the answer must be C.

Function questions are among the least understood questions on the GMAT, and this type of question can get people spending 3-4 minutes extrapolating numbers. If you understand the pattern using a small sample and reasoning, you can get this question right in under two minutes.

Hope this helps!
-Ron

Thanks for the solution....
Putting numbers to solve this kind of question can take 5 minutes easily....
We must follow the right approach to solve the question quickly...
User avatar
shashankism
Joined: 13 Mar 2017
Last visit: 23 Dec 2024
Posts: 611
Own Kudos:
Given Kudos: 88
Affiliations: IIT Dhanbad
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE:Engineering (Energy)
Posts: 611
Kudos: 670
Kudos
Add Kudos
Bookmarks
Bookmark this Post
emmak
If, for all positive integer values of n, P(n) is defined as the sum of the smallest n prime numbers, then which of the following quantities are odd integers?

I. P(10)
II. P(P(10))
III. P(P(P(10)))

(A) I only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III


P(n) = Sum of 1st n prime numbers. Among these prime numbers only 2 i.e. first prime number is even.
P(10 )= Sum of 2 and 9 odd numbers = even +9*odd = odd
P(P(10)) = P(odd) = even + even *odd = even
P(P(P(10))) = P(even) = even + odd * odd = odd.

So I and III only
Hence Answer C
User avatar
unraveled
Joined: 07 Mar 2019
Last visit: 10 Apr 2025
Posts: 2,727
Own Kudos:
2,168
 [1]
Given Kudos: 763
Location: India
WE:Sales (Energy)
Posts: 2,727
Kudos: 2,168
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
emmak
If, for all positive integer values of n, P(n) is defined as the sum of the smallest n prime numbers, then which of the following quantities are odd integers?

I. P(10)
II. P(P(10))
III. P(P(P(10)))

(A) I only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III
The question basically says that
\(P(n) = 2 + 3 + 5 + ... + n^{th} prime number\)
\(P(10) = 2 + 3 + 5 + ... + 29\)
= \(even + odd + odd + ... 10^{th}\) odd prime number
= even + nine odd numbers
= even + odd
= odd

So, I has to be there in the answer. Based on answer choices we are nowhere as I is in all of them.

\(P(odd) = 2 + 3 + 5 + ... + odd^{th} prime number\)
= even + even number of odd prime numbers
= even + even
= even

So, II must not be there in the answer.
B, D and E are eliminated.

\(P(even) = 2 + 3 + 5 + ... + even^{th} prime number\)
= even + odd number of prime numbers
= even + odd
= odd

So, III must be there. Hence II and III are the odd ones.

Answer D.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 37,398
Own Kudos:
Posts: 37,398
Kudos: 1,013
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
102570 posts
PS Forum Moderator
691 posts