GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 18 Jun 2019, 18:13 GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  If, for all positive integer values of n, P(n) is defined as

Author Message
TAGS:

Hide Tags

Manager  Joined: 09 Feb 2013
Posts: 112
If, for all positive integer values of n, P(n) is defined as  [#permalink]

Show Tags

4
8 00:00

Difficulty:   75% (hard)

Question Stats: 59% (02:20) correct 41% (02:07) wrong based on 271 sessions

HideShow timer Statistics

If, for all positive integer values of n, P(n) is defined as the sum of the smallest n prime numbers, then which of the following quantities are odd integers?

I. P(10)
II. P(P(10))
III. P(P(P(10)))

(A) I only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III

_________________
Kudos will encourage many others, like me.
Good Questions also deserve few KUDOS.
Veritas Prep GMAT Instructor Joined: 11 Dec 2012
Posts: 312
Re: If, for all positive integer values of n, P(n) is defined as  [#permalink]

Show Tags

6
2
emmak wrote:
If, for all positive integer values of n, P(n) is defined as the sum of the smallest n prime numbers, then which of the following quantities are odd integers?
I. P(10)
II. P(P(10))
III. P(P(P(10)))

(A) I only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III

Express appreciation by pressing KUDOS button

This kind of question can give students fits. The key is to figure out what is being asked. The function P is summing up the first N prime numbers, so for example P(3) = 2 + 3 + 5. The total is 10. If I picked P(4), I'd get the same sum + 7, or 17.

Since the question hinges on whether the sum is even or odd, the only number that's unique in this circumstance is 2, as it is the only even prime number in an otherwise homogenous sea of odd numbers. Thus P(1) is even, P(2) is odd, P(3) is even again and P(4) is odd again. This is the pattern, so clearly P(10) will be 2 + nine odd numbers, so it will be odd. We can eliminate D.

P(P(10)) is where this starts getting interesting. You're doing the same test on a number we don't exactly know, but we know it must be odd. Since we know the pattern, the odd number will give us even. P(P(10)) will not be odd, eliminate B and E.

P(P(10))) will be the same function over a number we just calculated would be even. Hence it must be odd again. Eliminate A, the answer must be C.

Function questions are among the least understood questions on the GMAT, and this type of question can get people spending 3-4 minutes extrapolating numbers. If you understand the pattern using a small sample and reasoning, you can get this question right in under two minutes.

Hope this helps!
-Ron
_________________
General Discussion
Verbal Forum Moderator B
Joined: 10 Oct 2012
Posts: 606
Re: If, for all positive integer values of n, P(n) is defined as  [#permalink]

Show Tags

emmak wrote:
If, for all positive integer values of n, P(n) is defined as the sum of the smallest n prime numbers, then which of the following quantities are odd integers?
I. P(10)
II. P(P(10))
III. P(P(P(10)))

(A) I only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III

Express appreciation by pressing KUDOS button

2 is the only even prime number. Now, the sum of first 10 prime numbers = 9*odd + 2 = odd. Thus P(10) = odd.

Again, the sum of the first n -odd primes = (n-1)*odd+2 = even.Thus, p(P(10)) = even.

Similarly, the sum of the first m - even primes = (m-1)*odd+2 = odd.

I and III.

C.
_________________
Manager  Joined: 09 Apr 2013
Posts: 192
Location: United States
Concentration: Finance, Economics
GMAT 1: 710 Q44 V44 GMAT 2: 740 Q48 V44 GPA: 3.1
WE: Sales (Mutual Funds and Brokerage)
Re: If, for all positive integer values of n, P(n) is defined as  [#permalink]

Show Tags

VeritasPrepRon wrote:
emmak wrote:
If, for all positive integer values of n, P(n) is defined as the sum of the smallest n prime numbers, then which of the following quantities are odd integers?
I. P(10)
II. P(P(10))
III. P(P(P(10)))

(A) I only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III

Express appreciation by pressing KUDOS button

This kind of question can give students fits. The key is to figure out what is being asked. The function P is summing up the first N prime numbers, so for example P(3) = 2 + 3 + 5. The total is 10. If I picked P(4), I'd get the same sum + 7, or 17.

Since the question hinges on whether the sum is even or odd, the only number that's unique in this circumstance is 2, as it is the only even prime number in an otherwise homogenous sea of odd numbers. Thus P(1) is even, P(2) is odd, P(3) is even again and P(4) is odd again. This is the pattern, so clearly P(10) will be 2 + nine odd numbers, so it will be odd. We can eliminate D.

P(P(10)) is where this starts getting interesting. You're doing the same test on a number we don't exactly know, but we know it must be odd. Since we know the pattern, the odd number will give us even. P(P(10)) will not be odd, eliminate B and E.

P(P(10))) will be the same function over a number we just calculated would be even. Hence it must be odd again. Eliminate A, the answer must be C.

Function questions are among the least understood questions on the GMAT, and this type of question can get people spending 3-4 minutes extrapolating numbers. If you understand the pattern using a small sample and reasoning, you can get this question right in under two minutes.

Hope this helps!
-Ron

Ah that makes sense... took me a while.

I. Even + 9 odds = odd.
II. Even + (odd * (odd - 1)) = even
III. Even + (odd * (even - 1)) = odd
SVP  Joined: 06 Sep 2013
Posts: 1651
Concentration: Finance
Re: If, for all positive integer values of n, P(n) is defined as  [#permalink]

Show Tags

2
Nice question +1. For this I would identify two cases: First we know that the only even number is 2. Therefore, if the number of prime integers that is n is even then the sum is odd, while if n is odd the sum is even.

In I we have that n is even therefore sum is odd. TRUE.

In II we have that the sum is odd so if we take that n is odd then the sum again will be even. FALSE.

In III, we get that the sum of n=10 is odd. Now the sum of odd is even and again the sum of even is odd. So III is TRUE as well.

Just to clarify

n=even, sum is odd
n=odd, sum is even

Hope this is clear
Cheers
J
Senior Manager  B
Joined: 13 Oct 2016
Posts: 364
GPA: 3.98
Re: If, for all positive integer values of n, P(n) is defined as  [#permalink]

Show Tags

1
I. P(10) = 2 + Σ(9 odd integers) = 2 + Σ(8 odd integers) + odd = 2 + even + odd = odd

II. P(P(10)) = P(odd) = 2+ Σ(even # of odd integers) = even + even = even

III. P(P(P(10)) = P(even) = 2 + Σ(odd # of odd integers) = 2 + odd = odd

C.
Manager  B
Joined: 14 Jun 2016
Posts: 65
Location: India
GMAT 1: 610 Q49 V21 WE: Engineering (Manufacturing)
Re: If, for all positive integer values of n, P(n) is defined as  [#permalink]

Show Tags

VeritasPrepRon wrote:
emmak wrote:
If, for all positive integer values of n, P(n) is defined as the sum of the smallest n prime numbers, then which of the following quantities are odd integers?
I. P(10)
II. P(P(10))
III. P(P(P(10)))

(A) I only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III

Express appreciation by pressing KUDOS button

This kind of question can give students fits. The key is to figure out what is being asked. The function P is summing up the first N prime numbers, so for example P(3) = 2 + 3 + 5. The total is 10. If I picked P(4), I'd get the same sum + 7, or 17.

Since the question hinges on whether the sum is even or odd, the only number that's unique in this circumstance is 2, as it is the only even prime number in an otherwise homogenous sea of odd numbers. Thus P(1) is even, P(2) is odd, P(3) is even again and P(4) is odd again. This is the pattern, so clearly P(10) will be 2 + nine odd numbers, so it will be odd. We can eliminate D.

P(P(10)) is where this starts getting interesting. You're doing the same test on a number we don't exactly know, but we know it must be odd. Since we know the pattern, the odd number will give us even. P(P(10)) will not be odd, eliminate B and E.

P(P(10))) will be the same function over a number we just calculated would be even. Hence it must be odd again. Eliminate A, the answer must be C.

Function questions are among the least understood questions on the GMAT, and this type of question can get people spending 3-4 minutes extrapolating numbers. If you understand the pattern using a small sample and reasoning, you can get this question right in under two minutes.

Hope this helps!
-Ron

Thanks for the solution....
Putting numbers to solve this kind of question can take 5 minutes easily....
We must follow the right approach to solve the question quickly...
_________________
If you appreciate my post then please click +1Kudos Director  D
Joined: 13 Mar 2017
Posts: 729
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE: Engineering (Energy and Utilities)
Re: If, for all positive integer values of n, P(n) is defined as  [#permalink]

Show Tags

emmak wrote:
If, for all positive integer values of n, P(n) is defined as the sum of the smallest n prime numbers, then which of the following quantities are odd integers?

I. P(10)
II. P(P(10))
III. P(P(P(10)))

(A) I only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III

P(n) = Sum of 1st n prime numbers. Among these prime numbers only 2 i.e. first prime number is even.
P(10 )= Sum of 2 and 9 odd numbers = even +9*odd = odd
P(P(10)) = P(odd) = even + even *odd = even
P(P(P(10))) = P(even) = even + odd * odd = odd.

So I and III only
_________________
CAT 2017 (98.95) & 2018 (98.91) : 99th percentiler
UPSC Aspirants : Get my app UPSC Important News Reader from Play store.

MBA Social Network : WebMaggu

Appreciate by Clicking +1 Kudos ( Lets be more generous friends.)

What I believe is : "Nothing is Impossible, Even Impossible says I'm Possible" : "Stay Hungry, Stay Foolish".
Non-Human User Joined: 09 Sep 2013
Posts: 11393
Re: If, for all positive integer values of n, P(n) is defined as  [#permalink]

Show Tags

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________ Re: If, for all positive integer values of n, P(n) is defined as   [#permalink] 29 Dec 2018, 11:44
Display posts from previous: Sort by

If, for all positive integer values of n, P(n) is defined as  