GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 16 Nov 2018, 14:25

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in November
PrevNext
SuMoTuWeThFrSa
28293031123
45678910
11121314151617
18192021222324
2526272829301
Open Detailed Calendar
  • Free GMAT Strategy Webinar

     November 17, 2018

     November 17, 2018

     07:00 AM PST

     09:00 AM PST

    Nov. 17, 7 AM PST. Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.
  • GMATbuster's Weekly GMAT Quant Quiz # 9

     November 17, 2018

     November 17, 2018

     09:00 AM PST

     11:00 AM PST

    Join the Quiz Saturday November 17th, 9 AM PST. The Quiz will last approximately 2 hours. Make sure you are on time or you will be at a disadvantage.

If for any positive integer x, d[x] denotes its smallest odd

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Intern
Intern
avatar
Joined: 22 Sep 2010
Posts: 5
If for any positive integer x, d[x] denotes its smallest odd  [#permalink]

Show Tags

New post Updated on: 12 Jul 2013, 01:13
2
13
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

33% (02:13) correct 67% (02:00) wrong based on 469 sessions

HideShow timer Statistics

If for any positive integer x, d[x] denotes its smallest odd divisor and D[x] denotes its largest odd divisor, is x even?

(1) D[x] - d[x] = 0
(2) D[3x] = 3

Originally posted by reg123456 on 01 Nov 2010, 07:58.
Last edited by Bunuel on 12 Jul 2013, 01:13, edited 1 time in total.
Edited the question and added the OA
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50619
Re: gmat club test DS - special operations  [#permalink]

Show Tags

New post 01 Nov 2010, 08:13
5
4
If for any positive integer x, d[x] denotes its smallest odd divisor and D[x] denotes its largest odd divisor, is x even?

First of all note that the smallest positive odd divisor of any positive integer is 1. Thus \(d[x]=1\) for any x.

(1) D[x] - d[x] = 0 --> \(D[x] - 1 = 0\) --> \(D[x] = 1\) --> x can be 1, so odd or \(2^n\), (2, 4, 8, ...), so even. Not sufficient.

(2) D[3x] = 3 --> again x can be 1, so odd, as the largest odd divisor of \(3x=3\) is 3 or x can be \(2^n\) (2, 4, 8, ...), so even, as the largest odd divisor of 3*2=6 or 2*4=12 is 3. Not sufficient.

(1)+(2) From (1) and (2) we have that x can be either 1, so odd or 2^n, so even. Not sufficient.

Answer: E.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

General Discussion
VP
VP
avatar
Status: There is always something new !!
Affiliations: PMI,QAI Global,eXampleCG
Joined: 08 May 2009
Posts: 1041
Re: gmat club test DS - special operations  [#permalink]

Show Tags

New post 05 May 2011, 21:49
1
x = 1 and 2 passes the conditions in both a and b.

thus E
Manager
Manager
avatar
Joined: 05 Nov 2012
Posts: 149
Re: If for any positive integer x, d[x] denotes its smallest odd  [#permalink]

Show Tags

New post 28 Dec 2013, 13:38
Bunuel wrote:
If for any positive integer x, d[x] denotes its smallest odd divisor and D[x] denotes its largest odd divisor, is x even?

First of all note that the smallest positive odd divisor of any positive integer is 1. Thus \(d[x]=1\) for any x.

(1) D[x] - d[x] = 0 --> \(D[x] - 1 = 0\) --> \(D[x] = 1\) --> x can be 1, so odd or \(2^n\), (2, 4, 8, ...), so even. Not sufficient.

(2) D[3x] = 3 --> again x can be 1, so odd, as the largest odd divisor of \(3x=3\) is 3 or x can be \(2^n\) (2, 4, 8, ...), so even, as the largest odd divisor of 3*2=6 or 2*4=12 is 3. Not sufficient.

(1)+(2) From (1) and (2) we have that x can be either 1, so odd or 2^n, so even. Not sufficient.

Answer: E.

Hello Bunuel, question mentions that x is positive integer but did not mention d[x] to be smallest positive odd divisor right?! how can you consider d[x] to be 1? I want to consider d[x] as negative of highest positive odd divisor!
However, answer to the question will remain the same E though.
Intern
Intern
avatar
Joined: 03 Oct 2012
Posts: 8
Concentration: Strategy, Finance
Re: If for any positive integer x, d[x] denotes its smallest odd  [#permalink]

Show Tags

New post 12 Nov 2015, 09:47
1
nitinj025 wrote:
HI,
For the First Condition to Satisfy.
i)D[x]-d[x] =0 the value should be a prime number . Which, directly states that value is not even.
ii) D[3x] =1 the value can only be 1 for x. Which even states that the value is not even.
Please, Can you explain my doubt.
Regards,
NJ


Hi NJ,

1. D[x] - d[x] = 0 implies that the smallest odd divisor and largest odd divisor are the same. This divisor can also be 1. i.e. not even.
For x = 1, D[x] = 1 and d[x] = 1 => x is not even
For x = 2, D[x] = 1 and d[x] = 1 => x is even
Insufficient.

You have incorrectly read the statement 2 to be D[3x] = 1.
2. D[3x] = 3
For x = 1, D[3x] = 3, x is not even
For x = 2, D[3x] = 3 (because 3x = 6, factors of 6 = 1, 2, 3, 6 i.e. largest odd factor =3) i.e. x is even.
For x = 3, D[3x] = 9 (because 3x = 9, factors of 6 = 1, 3, 9 i.e. largest odd factor =9) - Not relevant as it does not satisfy D[3x] = 3.
Insufficient.

Together, based on statement 2, only possible values for x are 1 and 2.
x = 1, d[x] = 1, D[x] = 1, D[3x] = 3, x is odd
x = 2, d[x] = 1, D[x] = 1, D[3x] = 1, x is even
Therefore, together insufficient. i.e Answer is E.

Hope this helps.
Math Revolution GMAT Instructor
User avatar
V
Joined: 16 Aug 2015
Posts: 6517
GMAT 1: 760 Q51 V42
GPA: 3.82
Premium Member
Re: If for any positive integer x, d[x] denotes its smallest odd  [#permalink]

Show Tags

New post 15 Nov 2015, 10:01
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.

If for any positive integer x, d[x] denotes its smallest odd divisor and D[x] denotes its largest odd divisor, is x even?

(1) D[x] - d[x] = 0
(2) D[3x] = 3

There is one variable (x) and 2 more equations are given by the 2 conditions.
For condition 1, D[x]=d[x], the answer is 'yes' for x=1, but 'no' for x=2. This is insufficient.
For condition 2, D[3x]=3, this also gives 'yes' for x=1, but 'no' for x=2. This is insufficient.
Looking at them together, it still gives 'yes' for x=1, but 'no' for x=2. The answer is therefore (E).

For cases where we need 1 more equation, such as original conditions with “1 variable”, or “2 variables and 1 equation”, or “3 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 59 % chance that D is the answer, while A or B has 38% chance and C or E has 3% chance. Since D is most likely to be the answer using 1) and 2) separately according to DS definition. Obviously there may be cases where the answer is A, B, C or E.
_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
"Only $99 for 3 month Online Course"
"Free Resources-30 day online access & Diagnostic Test"
"Unlimited Access to over 120 free video lessons - try it yourself"

Intern
Intern
avatar
B
Joined: 06 Feb 2018
Posts: 16
Reviews Badge
Re: If for any positive integer x, d[x] denotes its smallest odd  [#permalink]

Show Tags

New post 26 Mar 2018, 10:32
Bunuel, how can x be 2^n?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50619
Re: If for any positive integer x, d[x] denotes its smallest odd  [#permalink]

Show Tags

New post 26 Mar 2018, 10:37
1
mahrah wrote:
Bunuel, how can x be 2^n?


D[x] denotes the largest odd divisor of x. (1) says that D[x] = 1, so the the largest odd divisor of x. This means that x is some power of 2: 2^0 = 1, 2^1 = 2, 2^2 = 4, ... The largest, and the only, odd divisor of all of those numbers is 1.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

GMAT Club Bot
Re: If for any positive integer x, d[x] denotes its smallest odd &nbs [#permalink] 26 Mar 2018, 10:37
Display posts from previous: Sort by

If for any positive integer x, d[x] denotes its smallest odd

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.